linuxfoundation有哪些开源项目

linuxfoundation有哪些开源项目,第1张

花开半夏
面向物联网的21个开源软件项目有哪些,物联网开源平台搭建
admin 07-26 04:41 166次浏览
2019独角兽企业重金招聘Python工程师标准
51CTOcom直译物联网市场呈现碎片化、无定形化、不断变化的特征,其性质通常只需关注互 *** 作性。 难怪开源在这方面不俗。 ——客户犹豫不决,害怕将物联网的未来寄托在可能难以定制或互联的专有平台上。
本文介绍了主要的开源软件项目,重点讨论了面向家庭和工业自动化的开源技术。 我们忽略了专注于垂直领域的物联网项目,如Automotive Grade Linux和Dronecode。 我们还忽略了面向互联网的开源 *** 作系统发行版,包括Brillo、Contiki、Mbed、OpenWrt、Ostro、Riot和Ubuntusnappping。这次,我们将智能
这里介绍的21个项目包括由Linuxfoundation管理的两个大型项目: Allseen(Alljoyn )和ocf (iotivity ),以及物联网传感器的端点和网关我还介绍了几个专门针对物联网生态系统特定领域的小项目。 我们曾介绍过更多的项目,但越来越难分清物联网软件和普通软件的区别。 从嵌入式环境到云,越来越多的项目都带有物联网元素。
您声称这21个项目都是开源的,但请确保完整的名称不在本文的范围内。 它们至少在生态系统的一个部分运行Linux,大多数都完全支持Linux,从开发环境到云/服务器、网关和传感器端点部件。 大多数组件都有可以在Linux开发板(如Raspberry Pi和BeagleBone )上运行的组件,大多数都支持Arduino。
物联网领域仍然有很多专有技术,特别是在自上而下的企业平台上。 但是,其中也提供了部分开放访问权限。 例如,威瑞森的ThingSpace针对4G智慧城市APP应用,拥有一套免费的开发API,支持开发板,尽管核心平台本身是独一无二的。 相似的是,亚马逊的AWS物联网工具包包括部分开放的设备SDK和开源入门工具包。
其他主要的专有平台包括苹果的HomeKit和微软的Azure物联网工具包。 在拥有230个成员的Thread Group中,该组织监督基于6LoWPAN的对等Thread网络协议。 Thread Group由谷歌的母公司Alphbet旗下的Nest设立,没有提供像AllSeen和OCF那样全面的开源框架。 但是,它与Brillo相关,也与Weave物联网通信协议相关。 5月,Nest发布了名为OpenThread的开源版Thread。
介绍21个面向物联网的开源软件项目。
AllseenAlliance(Alljoyn ) )。
由Allseenalliance(asa )监管的AllJoyn互 *** 作系统框架可能是市场上采用最广泛的开源物联网平台。
Bug Labs dweet和freeboard
bugglas是从制造基于模块化Linux的有bugh的硬件设备开始的,但很久以前就演变成了与硬件无关的企业级物联网平台。 Bug Labs提供“dweet”消息、警告系统和“freeboard”物联网设计APP。 dweet使用HAPI Web API和JSON来帮助发布和描述数据。 freeboard是一种拖放式工具,用于设计物联网仪表板和可视元素。
DeviceHive
DataArt基于AllJoyn的设备管理平台可以运行在许多云服务上,包括Azure、AWS、Apache Mesos和OpenStack。 DeviceHive专注于使用ElasticSearch、Apache Spark、Cassandra和Kafka,分析大数据。 有些网关组件可以在运行Ubuntu Snappy Core的任何设备上运行。 模块化网关软件与DeviceHive云软件和物联网协议配合使用,作为Snappy Core服务进行部署。
DSA
分布式服务架构(DSA )便于集中式设备的互 *** 作性、逻辑和APP应用。 DSA项目正在构建分布式服务链接(DSLinks )库,以支持协议转换以及与第三方数据源的数据集成。 DSA提供了一个可扩展的网络拓扑,其中包括多个DSLinks,用于在连接到分层代理分层结构的物理互联网边缘设备上运行。
EclipseIOT(Kura ) )。
Eclipse基金会的物联网主要围绕基于Java/OSGi的Kura API容器和聚合平台,支持在服务网上运行的m2m APP应用。 Kura基于Eurotech的Everywhere Cloud物联网框架往往与Apache Camel集成,后者是基于Java的基于规则的路由和中介引擎。 Eclipse物联网子项目包括Paho消息传递协议框架、面向轻量级服务器的Mosquitto MQTT体系结构和Eclipse SmartHome框架。 有些项目实现名为Californium的基于Java的受限APP应用协议(CoAP )。
Kaa
CyberVision支持的Kaa项目为云互联的大型物联网提供了可扩展的端到端物联网框架。
该平台包括一种支持REST的服务器功能,可用于服务、分析和数据管理,通常部署成由Apache Zookeeper协调的节点集群。Kaa的端点SDK支持Java、C++和C开发,负责处理客户机/服务器通信、验证、加密、持久性和数据编排。SDK包括针对特定服务器、支持GUI的模式,这些模式可转换成物联网物件绑定。模式治理语义,并抽象一组迥异设备的功能。
Macchinaio
Macchinaio提供了一种“支持Web、模块化、可扩展的”JavaScript和C++运行时环境,可用于开发在Linux开发板上运行的物联网网关应用程序。Macchinaio支持一系列广泛的传感器和连接技术,包括Tinkerforge bricklet、XBee ZB传感器、GPS/GNSS接收器、串行和GPIO联网设备以及方向感应器。
GE Predix
GE面向工业物联网的平台即服务(PaaS)软件基于Cloud Foundry。它增添了资产管理、设备安全、实时预测分析,并支持不同数据的采集、存储和访问。GE Predix是GE为内部运营而开发的,它已成为最成功的企业物联网平台之一,收入大约60亿美元。GE最近与HPE达成了合作伙伴关系,HPE将把Predix整合到自己的服务中。
Home Assistant
这个作为后起之秀的草根项目提供了一种面向Python的家居自动化方法。
Mainspring
M2MLabs的基于Java的框架针对远程监控、车队管理和智能电网等应用领域中的M2M通信。与许多物联网框架一样,Mainspring高度依赖REST Web服务,并提供了设备配置和建模工具。
Node-RED
这种面向Nodejs开发人员的可视化布线工具拥有基于浏览器的数据流编辑器,可用于设计物联网节点当中的数据流。然后,节点可以迅速部署成运行时环境,并使用JSON来存储和共享。端点可以在Linux开发板上运行,支持的云包括Docker、IBM Bluemix、AWS和Azure。
Open Connectivity Foundation(IoTivity)
英特尔和三星支持的开放互联联盟(OIC)组织和UPnP论坛组成的这个组织正在努力成为物联网方面领先的开源标准组织。OCF的开源IoTivity项目依赖充分利用的JSON和CoAP。
openHAB
OpenIoT
这款基于Java的OpenIoT中间件旨在使用一种公用云计算交付模式,为开放、大规模的物联网应用提供便利。除了表示物联网物件的本体、语义模型和标注外,该平台还包括传感器和传感器网络中间件。
OpenRemote
OpenRemote为家庭和楼宇自动化而设计,它以广泛支持众多智能设备和网络规范而出名,比如1-Wire、EnOcean、 xPL、Insteon和X10等规范。规则、脚本和事件都得到支持,还有基于云的设计工具,可用于用户界面、安装、配置、远程更新及诊断。
OpenThread
这是Nest最近从基于6LoWPAN的物联网Thread无线网络标准分离出来的开源项目,它还得到了ARM、Microchip旗下的Atmel、Dialog、高通和德州仪器的支持。OpenThread实现了所有Thread网络层,还实现了Thread的端点设备、路由器、Leader和边界路由器等角色。
Physical Web/Eddystone
谷歌的Physical Web让蓝牙低能耗(BLE)信标可以将URL发送到智能手机。它针对谷歌的Eddystone BLE信标经过了优化,这提供了除苹果的iBeacon之外的一种开放技术。其想法是,行人可以与任何具有BLE功能的支持性设备(比如汽车停放计时器、标牌或零售产品)联系。
PlatformIO
基于Python的PlatformIO包括IDE、项目生成器和基于Web的库管理器,它是为访问来自基于微控制器的Arduino和基于ARM Mbed的端点的数据设计的。它为200多种板卡提供了预先配置的设置,并与Eclipse、Qt Creator及其他IDE整合起来。
The Thing System
这种基于Nodejs的智能家居“监管”软件声称支持真正的自动化,而不是简单的通知。其自学习人工智能软件可处理许多协同式M2M *** 作,不需要由人干预。缺少云组件恰恰提供了更好的安全性、隐私性和控制性。
ThingSpeak
成立五年的ThingSpeak项目专注于传感器日志、位置跟踪、触发器及提醒以及分析。ThingSpeak用户可以使用用于物联网分析和可视化的MATLAB版本,不需要向Mathworks购买许可证。
Zetta
Zetta是一种面向服务器的物联网平台,利用Nodejs、REST和WebSockets构建而成,奉行基于数据流的“响应式编程”开发理念,用Siren超媒体API连接起来。设备被抽取成REST API,用云服务连接起来,这些服务包括可视化工具,并支持Splunk之类的机器分析工具。该平台可将Linux和Arduino开发板之类的端点与Heroku之类的云平台连接起来,以便构建地理分布式网络。
转载于:>

物联网将在未来产生更多的大数据_数据分析师考试

随着时代的发展,越来越多的人工统计分析 *** 作转化给了机器。现下的数据收集量也有了大幅度的增长。尤其是近几年移动互联网事业的发展带动了数据的生成,前几年移动数据增长速度为81%,近几年,随着智能化的普及,移动数据增长趋于平缓,但其增长率依旧高达61%。

预计2020年至2030年间将赶超世界移动流量平均水平。流量带动数据作为人口大国,我国所产生的数据量也将处于世界领先地位。移动4G网络的逐步普及,移动端产生的数据速度和数量皆高于桌面网端将成为一种必然趋势。

邬院士会上表明:“现今世界主要数据来源依旧定位在摄像头,但是未来数据40%左右皆可能源于物联网。”大数据呼应智慧城市的发展。去年6月国家政府签署开放数据协议以改进城市管理,规定14组必须开放数据,同时设定了公共数据开源共享,便于全民共享共利。

“大智移云”推进物联网的大力发展,尽管时下我国的物联网产业落后于欧美,但在国家的重视和企业的大力投入双向促进下,随着用户体验感的提升,中国物联网产业很快即可摆脱因为标准不统一和认知度不高的劣势,跻身翘楚。

以上是小编为大家分享的关于物联网将在未来产生更多的大数据的相关内容,更多信息可以关注环球青藤分享更多干货

物联网架构由设备、网关、网络基础设施、管理软件四个部分组成。
设备主要是指传感器,它们通过网络进行通信,无需人工干预。
网关,充当设备和云之间的中介,以提供所需的网络连接、安全性和可管理性。
网络基础设施,一般是由我们常见的如:由路由器、交换机、网关、中继器和其他控制数据流的设备组成。
管理软件:负责分析从传感器收集数据并作出指令并提供可视化数据与交互给 *** 作用。

下载物联网APP等。
1、下载物联网APP界面。
2、设置参数,主要是deviceid,数据流id,还有APIKey。
3、设置IP。
4、添加数据流。
5、进入设备管理里面就可以看图了。

数据分析、机器学习与物联网
我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。

大数据云计算物联网人工智能如何用于数媒制作,方法如下:
1首先了解大数据所表达的问题,以及其中相对应的数据流。
2大数据是人工智能的基础,数媒制作需要人工智能中的虚拟现实技术,利用其来构造框架。
3大数据和物联网的技术融合,可以创造物体无限互联,网络无限延伸的深层应用效果。计算机技术快速发展的当下,数据之间可以进行高速、有效的传播,并且信息的处理效率也不断地加快,使数媒制作有新方向。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13274336.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-05
下一篇 2023-07-05

发表评论

登录后才能评论

评论列表(0条)

保存