物联网设备有哪些

物联网设备有哪些,第1张

物联网设备是非标准计算设备,可无线连接到网络并具有传输数据的能力。物联网涉及将互联网连接范围从台式机,笔记本电脑,智能手机和平板电脑之类的标准设备扩展到任何范围的传统“哑”或未启用互联网的物理设备和日常物品。这些设备嵌入了技术,可以通过Internet进行通信和交互。它们也可以被 远程监视和控制。

连接的设备是生态系统的一部分,在该生态系统中,每个设备都与环境中的其他相关设备通信以自动执行家庭和行业任务。他们可以将可用的传感器数据传达 给用户,企业和其他预期的各方。这些设备可以分为三大类:消费类,企业类和工业类。

消费者连接的设备包括智能电视,智能扬声器,玩具,可穿戴设备和智能电器。例如,在 智能家居中,设备旨在感应和响应人的存在。当一个人回到家中时,他们的汽车与车库连通以打开门。进入室内后,温度调节器已经被调整到其首选温度,并且照明设置为较低的强度和颜色,因为他们的智能手表数据表明这是一个充满压力的日子。其他智能家居设备包括根据天气预报调整洒水量的洒水装置和了解最经常清洁房屋区域的机器人真空吸尘器。

企业物联网设备是旨在供企业使用的边缘设备。有各种各样的企业物联网设备可用。这些设备的功能各不相同,但往往倾向于维护设施或提高运营效率。一些选项包括智能锁,智能恒温器,智能照明和智能安全性。这些技术的消费者版本也存在。

在企业中,智能设备可以帮助举行会议。位于会议室中的智能传感器可以帮助员工确定和安排会议可用的房间,确保可以使用合适的房间类型,大小和功能。当与会人员进入会议室时,温度将根据占用情况进行调整,随着屏幕上适当的PowerPoint加载,灯光将变暗,并且演讲者开始演示。

消费者,企业和工业物联网设备的示例包括装配在会议室和装配线机器上的智能电视和智能传感器。

工业物联网设备旨在用于工厂或其他工业环境。大多数工业物联网设备是用于监视装配线或其他制造过程的传感器。来自各种类型传感器的数据将传输到监视应用程序,以确保关键流程处于最佳运行状态。这些相同的传感器还可以通过预测何时需要更换零件来防止意外停机。

如果发生问题,系统可能能够将通知发送给服务技术人员,以告知他们出了什么问题以及解决问题所需的部件。这样可以避免技术人员到现场诊断问题,然后再去仓库获取解决问题所需的零件。

物联网设备如何工作?

物联网设备在功能方面有所不同,但是物联网设备在工作方式上有一些相似之处。首先,物联网设备是旨在以某种方式与现实世界进行交互的物理对象。该设备可能是装配线上的传感器或智能监控摄像头。无论哪种情况,设备都可以感知物理世界中正在发生的事情。

该设备本身包括集成的CPU,网络适配器和固件,通常在开放源代码平台上构建。在大多数情况下,物联网设备连接到动态主机配置协议服务器,并获取该设备可用于在网络上运行的IP地址。某些物联网设备可通过公共互联网直接访问,但大多数设计为仅在专用网络上运行。

尽管不是绝对要求,但许多物联网设备是通过软件应用程序配置和管理的。但是,某些设备具有集成的Web服务器,因此不需要外部应用程序。

物联网设备配置并开始运行后,其大部分流量就出站了。例如,安全摄像头可传输视频数据。同样,工业传感器流式传输传感器数据。但是,某些物联网设备(例如智能灯)确实接受输入。

物联网与、传感网、泛在网的区别为:层面不同、灵活性不同、沟通不同。

一、层面不同

1、物联网:物联网在物的层次上描述物。

3、传感网:传感器网络从技术和设备的角度描述事物。

3、泛在网:泛在网络是事物在人和事物层面上的表征。

二、灵活性不同

1、物联网:物联网灵活性较差,脱离了人的直接参与,物体出现的问题也全部由人工智能进行分析、管理和纠正。

2、传感网:传感网灵活性较差,利用对物体信号的感知及已有的逻辑判断方式进行分析、管理和纠正。

3、泛在网:泛在网灵活性较好,通过统一的网络,实现了信息的处理和无缝连接。

三、沟通不同

1、物联网:物联网实现了及物与物的沟通。

2、传感网:传感网实现了人与物的沟通。

3、泛在网:泛在网实现了人与人的沟通、人与物的沟通以及物与物的沟通,使沟通的形态呈现多渠道、全方位、多角度的整体态势。

个人觉得物联网技术要好于传感器技术。因为物联网是基于RAID无线射频技术的,主要分为:感知层、传输层、应用层这三个层次。像我们做的农业物联网就包括
(1)感知系统:环境监测传感设备,包括环境感知类、土壤感知类、植物营养感知类等。
(2)传输系统:数据传输处理网络;
(3)应用系统:终端智能控制平台:
像托普物联网主要能做这些系统:无线传感系统解决方案、温室智能控制解决方案、智能节水灌溉解决方案、水产养殖管理解决方案、食品溯源系统解决方案、专家咨询系统解决方案、视频监控系统解决方案、气象环境监测解决方案、花卉果蔬植保解决方案、水池水质监测解决方案、农产品安全监测解决方案、农业示范园区解决方案、终端控制解决方案、土壤墒情检测解决方案、大田环境监测解决方案、畜禽舍环境监控解决方案。所以物联网涉及的东西更多。

物联网设备有:

1、物联网技术在人们生活中的应用也十分宽广,目前市场上主流的智能硬件产品主要有:智能家居、智能穿戴设备等智能设备。

2、智能穿戴:智能老人穿戴,智能宠物穿戴,智能成人手表,智能儿童手表。

3、智能家居:智能空气净化器平台,扫地机器人,智能排插,智能厨卫。

扩展资料:

物联网用途

物联网设备用于消费者、商业、工业和基础设施等领域。物联网设备的主要部分是为消费者使用而设计的,例如,车辆使用物联网技术向制造商报告其运行状况,并为我们提供一些现代化便利服务,例如远程启动、锁定和预热汽车。根据目前的物联网趋势,智能家居功能,如GoogleHome和AmazonEcho,是物联网市场增长的另一个主要部分。

在商业应用方面,物联网主要用于医疗保健领域。物联网设备用于远程健康监测和紧急通知,这在老年护理中尤其有用。

物联网的关键技术有哪些
物联网的产业链可细分为标识、感知、信息传送和数据处理这4个环节,其中的核心技术主要包括射频识别技术,传感技术,网络与通信技术和数据的挖掘与融合技术等。
物联网的核心技术有哪些
物联网技术由三个方面构成:

1、应用技术:数据存储、并行计算、数据挖掘、平台服务、信息呈现;

2、网络技术:低速低功耗近距离无线、IPV6、广域无线接入增强、网关技术、AD HOC
网络、区域宽带无线接入、广域核心网络增强、节点技术;

3、感知技术:传感器、执行器、RFID标签、二维条码;

物联网技术的核心:无线传感网络(WSN)和射频识别(RFID);

计算机专业应主要学习物联网技术应用、构建、运营、维护、管理、服务等领域知识。
物联网主要技术有哪些
终端接入技术

物联网终端的种类非常多,包括物联网网关、通信模块以及大量的行业终端,其中尤以行业终端的种类最为丰富。从终端接入的角度来看,物联网网关、通信模块和智能终端是目前关注的重点。

物联网网关:它是连接传感网与通信网络的关键设备,其主要功能有数据汇聚、数据传输、协议适配、节点管理等。物联网环境下,物联网网关是一个标准的网元设备,它一方面汇聚各种采用不同技术的异构传感网,将传感网的数据通过通信网络远程传输;另一方面,物联网网关与远程运营平台对接,为用户提供可管理、有保障的服务。

通信模块:它是安装在终端内的独立组件,用来进行信息的远距离传输,是终端进行数据通信的独立功能块。通信模块是物联网应用终端的基础。物联网的行业终端种类繁多,体积、处理能力、对外接口等各不相同,通信模块将成为物联网智能服务通道的统一承载体,嵌入各种行业终端,为各行各业提供物联网的智能通道服务。

智能终端:它满足了物联网的各类智能化应用需求,具备一定数据处理能力的终端节点,除数据采集外,还具有一定运算、处理与执行能力。智能终端与应用需求紧密相关,比如在电梯监控领域应用的智能监控终端,除具备电梯运行参数采集功能外,还具备实时分析预警功能,智能监控终端能在电梯运行过程中对电梯状况进行实时分析,在电梯故障发生前将警报信息发送到远程管理员手中,起到远程智能管理的作用。

平台服务技术

一个理想的物联网应用体系架构,应当有一套共性能力平台,共同为各行各业提供通用的服务能力,如数据集中管理、通信管理、基本能力调用(如定位等)、业务流程定制、设备维护服务等。

M2M平台:它是提供对终端进行管理和监控,并为行业应用系统提供行业应用数据转发等功能的中间平台。平台将实现终端接入控制、终端监测控制、终端私有协议适配、行业应用系统接入、行业应用私有协议适配、行业应用数据转发、应用生成环境、应用运行环境、业务运营管理等功能。M2M平台是为机器对机器通信提供智能管道的运营平台,能够控制终端合理使用网络,监控终端流量和分布预警,提供辅助快速定位故障,提供方便的终端远程维护 *** 作工具。

云服务平台:以云计算技术为基础,搭建物联网云服务平台,为各种不同的物联网应用提供统一的服务交付平台,提供海量的计算和存储资源,提供统一的数据存储格式和数据处理及分析手段,大大简化应用的交付过程,降低交付成本。随着云计算与物联网的融合,将会使物联网呈现出多样化的数据采集端、无处不在的传输网络、智能的后台处理的特征。
物联网的技术体系包括哪些方面
目前公认的有三个:

1、感知层:感知层是物联网的皮肤和五官—识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS等。主要作用是识别物体,采集信息,与人体结构中皮肤和五官的作用相似。

2、网络层:网络层是物联网的神经中枢和大脑—信息传递和处理。网络层包括通信与互联网的融合网络、网络管理中心和信息处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。唯康教育,

3、应用层:应用层是物联网的“社会分工”—与行业需求结合,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,与行业需求结合,实现行业智能化,这类似于人的社会分工,最终构成人类社会!
物联网产业是指哪些行业
物联网产业链很长,其体系构架大致矗分为感知层、网络层、应用层三个层面,每个层面又涉及到诸多细分领域。

感知层的功能主要是获取信息,负责采集物理世界中发生的物理事件和数据,实现外部世界信息的感知和识别。包括传统的无线传感器网络、全球定位系统、射频识别、条码识读器等。这一层主要涉及两大类关键技术:传感技术和标识技术。传感器网络的感知主要通过各种类型的传感器对物体的物质属性(如温度、溼度、压力等)、环境状态、行为态势等信息进行大规模、分布式的信息获取与状态识别,它可用于环境监测、远程医疗、智能家居等领域。标识技术通过给每件物体分配一个唯一的识别编码,实现物联网中任何物体的互联。

网络层主要是完成感知信息高可靠性、高安全性的传送和处理。从具体实现的角度,本层由下而上又分为三层:接入网、核心网和业务网。①接入网:主要完威各类设备的网络接入,强调各类接入方式,比如现有蜂窝移动通信网、无线局域/城域网、卫星通信网、各类有线网络等。②核心网:主要是完成信息的远距离传输,目前依靠现有的互联网、电信网或电视网。随着三网融合的推进,核心网将朝全IP网络发展。③业务网:是实现物联网业务能力和运营支撑能力的核心组成部分。

应用层主要是利用经过分析处理的感知数据,将物联网技术与个人、家庭和行业信息化需求相结台,可向用户提供丰富的服务内容,大大提高生产和生活的智能化程度,应用前景十分广阔。其应用可分为监控型(物流监控、污染监控、灾害监控)、查询型(智能检索、远程抄表)、控制型(智能交通、智能家居、路灯控制、远程医疗、绿色农业)、扫描型(手机钱包、ETC)等。
物联网的核心技术有哪些
在物联网应用中有三项关键技术

1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。

2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。

3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。
物联网的关键技术有哪些
“物联网技术”的核心和基础仍然是“互联网技术”,是在互联网技术基础上的延伸和扩展的一种网络技术;其用户端延伸和扩展到了任何物品和物品之间,进行信息交换和通讯。因此,物联网技术的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的一种网络技术叫做物联网技术。

定义

物联网(Internet of Things)指的是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具备“内在智能”的传感器、移动终端、工业系统、数控系统、家庭智能设施、视频监控系统等、和“外在使能”(Enabled)的,如贴上RFID的各种资产(Assets)、携带无线终端的个人与车辆等等“智能化物件或动物”或“智能尘埃”(Mote),通过各种无线和/或有线的长距离和/或短距离通讯网络实现互联互通(M2M)、应用大集成(Grand Integration)、以及基于云计算的SaaS营运等模式,在内网(Intranet)、专网(Extranet)、和/或互联网(Internet)环境下,采用适当的信息安全保障机制,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面(集中展示的Cockpit Dashboard)等管理和服务功能,实现对“万物”的“高效、节能、安全、环保”的“管、控、营”一体化。[1]
物联网技术主要应用有哪些方面
物联网把新一代IT技术充分运用在各行各业之中,具体地说,就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合,在这个整合的网络当中,存在能力超级强大的中心计算机群,能够对整合网络内的人员、机器、设备和基础设施实施实时的管理和控制,在此基础上,人类可以以更加精细和动态的方式管理生产和生活,达到“智慧”状态,提高资源利用率和生产力水平,改善人与自然间的关系。

毫无疑问,如果“物联网”时代来临,人们的日常生活将发生翻天覆地的变化。

目前来看消费级物联网还有很长的路要走,但工业物联网方面已有非常成熟的方案!

智能传感器得到广泛关注

智能传感器是指具有信息采集、信息处理、信息交换、信息存储等功能的多元件集成电路,是集传感单元、通信芯片、微处理器、驱动程序、软件算法等于一体的系统级产品。

在安装使用过程、使用过程、工作状态下、数据采集后的不同阶段,智能传感器具备例如自主校零、数据采集及自主分析、决策处理等智能化功能。此外,智能传感器还具备通过电池及太阳能等辅助供电方式,实现无人值守应用,大数据分析数据采集产品中的自学习功能等。

按制造技术,智能传感器可分为微机电系统(MEMS)、互补金属氧化物半导体(CMOS)、光谱学三大类。1998年,霍尼韦尔推出全球首个智能传感器—ST3000系列压力传感器;20世纪90年代,随着智能化测量技术的进一步提高,传感器具备了自诊断、记忆与信息处理等多种功能;2000年,MEMS技术开始大规模使用,推动了传感器的智能化、微型化、集成化方向发展;2010年,随着物联网技术和智能制造兴起,智能传感器得到广泛关注。

全球智能传感器渗透率不断提升

根据智能传感器市场规模/传感器市场规模计算智能化渗透率,2018-2020年,全球传感器智能化渗透率不断提升,2020年,全球传感器智能化渗透率达2229%。

预计需求大幅增长,至2026年市场规模近800亿美元

智能传感器的重点下游应用领域分别是消费电子、汽车电子、工业电子和医疗电子,其中,消费电子领域市场规模最大,占据总量的2/3,其次为汽车电子领域。综合市场规模的大小以及增长速度两方面考虑,发展较快的新兴应用如指纹识别和智能驾驶将成为智能传感器市场成长的主要动力,初步发展的新兴应用如智能机器人和智能医疗器械。

根据赛迪顾问数据,2018-2020年,全球智能传感器市场规模呈上升态势。2020年,全球智能传感器市场规模约为358亿美元。

物联网的发展对传感技术提出了更高的要求,传感器朝着高精度、小型化、低功耗、智能化等方向发展。由于智能传感器可获取可靠并准确的信息,在智能制造、智能汽车、智慧医疗等领域,对智能传感器的需求大幅增长。

根据Allied Market Research的预测,2020-2027年,全球智能传感器市场规模年均增速为143%,预计至2026年,全球智能传感器市场规模接近800亿美元。

以上数据参考前瞻产业研究院《中国智能传感器行业市场前瞻与投资战略规划分析报告》

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13277837.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-06
下一篇 2023-07-06

发表评论

登录后才能评论

评论列表(0条)

保存