物联网云平台具备哪些功能?哪家好些

物联网云平台具备哪些功能?哪家好些,第1张

物联网云平台需具备以下功能。
(1)业务受理、开通、计费功能
要成为物联网业务的服务提供商,需要建立一套面向客户、传感器厂商、第三方行业应用提供商的运营服务体系,包括组织、流程、产品、支撑系统,其中支撑系统应具备业务受理、开通、计费等功能,能够提供物联网产品的快速开通服务。
(2)信息采集、存储、计算、展示功能
物联网云平台需要支持通过无线或有线网络采集传感网络节点上的物品感知信息,进行格式转换、保存和分析计算。相比互联网相对静态的数据,在物联网环境下,将更多地涉及基于时间和空间特征、动态的超大规模数据计算,并且不同行业的计算模型不同。这些应用所产生的海量数据对物联网运营平台的采集、存储、计算能力都提出了巨大的挑战。
(3)行业的灵活拓展应用模式
不同行业的业务规则和流程不同,其应用的功能和计算需求也有差别,例如在大气环保监控应用中,需要根据大气环境监测设备上采集到的降尘、一氧化碳、二氧化硫等数据,按一定的指标计算规则进行分析计算,得出分析结果,展现到监控中心计算机或监控人员手机上;而在电力抄表应用中,对于采集到的用户电表读数,将会用于计算当月用电量和电费,生成电费账单,进而支持收费销账。
因此物联网云平台不可能是一个封闭自运行的应用系统,需要具备第三方行业应用的集成能力即要能提供给第三方合作开发者灵活拓展的云端应用开发API接口,从而能够满足不同行业应用的差异化功能要求。

有机会,但是建议不要做泛和大,从垂直领域出发比较好,为啥这样说呢?原因如下。

1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。

国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。

国外有亚马逊、IBM、SAP、

谷歌、GE、西门子、博世等。

通过以上名单可以发现,这些公司的特点。

这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。

2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。

3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。

物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?

最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。

以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。

不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型

1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。

物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。

在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。

因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。

物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰

伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。

中心化的物联网架构存在三个问题。

一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。

其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。

第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。

简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。

边缘算力的应用场景到底有多广阔?

边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)

第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。

无人驾驶技术:

无人驾驶

智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:

一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。

二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。

三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。

其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。

机会很大

物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。

通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点

连接数告诉增长是物联网行业发展基础

物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。

物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。

物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。

物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等

物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>不可以。物联网的节点不仅仅是指传感器,物联网节点包含物联网传感器,是一个RFID的读写器,不可以获得ipv6地址,是一个巨大的缺口,在部署物联网时,没有网络地址转换(networkaddresstranslation,NAT)这一技术层的介入,大多数的设备都无法连接到地址。

常见的大数据术语表(中英对照简版):
A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte

在物联网时代一切皆可成为节点,一切触点皆可成为社交入口,无数个触点连接的一张融合线上、线下、用户社群的物联网。企业与用户的关系必须从“交易”机制升级为“交互”机制,品牌之间的竞争将逐渐转移到生态品牌的竞争上。而现在传感器、RFID技术、人工智能、通讯技术等的飞速发展,也让实时数据共享和处理成为现实。在这样的基础上,海尔在全球范围内第一个给出了构建物联网时代的生态品牌。

物联网硬件包括四大模块构成:M2M;两化融合;传感网和RFID,
所需硬件可以从这四个环节分析,比较常见的如传感器、RFID、嵌入式设备以及通信设备等。
M2M是将数据从一台终端传送到另一台终端,也就是就是机器与机器(Machine to Machine)的对话
两化融合是信息化和工业化的高层次的深度结合, 是指以信息化带动工业化、以工业化促进信息化,走新型工业化道路;两化融合的核心就是信息化支撑,追求可持续发展模式
传感网的定义为随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的无线网络
射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13279707.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-06
下一篇 2023-07-06

发表评论

登录后才能评论

评论列表(0条)

保存