移动物联网经济效益和社会效益分析

移动物联网经济效益和社会效益分析,第1张

物联网与各种网络的关系
物联网(InternetofThings)的概念最早在1998年由美国MIT大学的KevinAshton教授提出,把RFID技术与传感器技术应用于日常物品中形成物联网,着重的是物品的标记。2005年ITU以InternetofThings为题发布互联网报告,强调物品联网。近年随着移动互联网技术和云计算技术的发展,特别是节能环保和社会安全等需求,物联网再度受到关注,但聚焦在通过感知达到智能服务的目的。在2010年我国的政府工作报告所附的注释中对物联网有如下的说明:是指通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。它是在互联网基础上延伸和扩展的网络。
传感网使用传感器作为感知元件,应用上可以无需基础网络,通常也不强调智能分析与决策。物联网使用传感器、RFID、激光扫描器、红外标记、普通条码、二维码、全息光学条码、GPS等作为感知元件,需要通过基础网络实现物与物和人与物互联,强调对感知数据的汇聚和挖掘及分析决策。物联网的组成包括三部分,即泛在化的传感节点及网络、异构性的网络基础设施、普适性的数据分析与服务。物联网与传感网的区别不在于联网的物件数量而在于感知单元的多样性和感知结果的智能利用,可以说传感网是物联网的一个子集。
物联网的底层借助RFID和传感器等实现对物件的信息采集与控制,通过传感网将传感器等感知节点的信息汇集,并连到核心网络,基础网络是物联网的重要组成部分,用于承载物物互联或物与人互联的信息传递,物联网的上层实现信息的处理和决策支持。物联网可用的基础网络可以有很多种,通常互联网最适合作为物联网的基础网络。尽管下一代互联网将以支持物联网的应用作为主要目标之一,但物联网并不是互联网的下一代,物联网可以说是互联网上的一种业务或应用。物联网强调的是认知,是互联网向感知平台和数据挖掘两个方向的拓展。物联网与互联网上传统业务相比有不同的特点:在物联网以公众网络(例如互联网)作为基础网络平台的情况下,物联网相当于互联网上面向特定任务来组织的专网()。互联网是全球性的,但物联网往往是行业性的或区域性的,物联网的行业应用的多样性与承载平台的通用性之间需要有中间件来适配。
M2M(Machine-to-Machine)与物联网有关,M2M通信与物联网的核心理念一致,不同之处是物联网的概念和所采用的技术及应用场景更宽泛,M2M主要聚焦在无线通信网络应用上,是物联网应用的一种主要方式。与物联网有关的还有CPS(CyberPhysicalSystem),CPS是计算、通信与物理过程的综合,CPS与物联网有类似的能力,物联网通过数据挖掘可得到决策建议,但通常是要上报主管人员再决定是否要采取措施,而CPS强调循环反馈,要求系统能够在感知物理世界之后通过通信与计算再自动执行对物理世界的反馈控制措施。从物与物通信进一步扩展到物与人以及人与人通信,支持个人和/或设备无论何时、何地、何种方式以最少的技术限制接入到服务和通信的能力,这种网络发展的愿景被称为泛在网。
在物联网上所用的通信技术比较成熟,但仍需要考虑物联网节点多功率小且需要接力传送等特点进行适配。
物联网通常有很多传感器节点,在传感过程中,首先是需要识别被感知的对象和感知信息。在给定任务的情况下使用最少数量的节点并最省功耗是物联网设计的目标。节点的传输距离、节点的合理分层分簇、拓扑控制等一系列节点的几何布局,是物联网感知层面设计的主要问题。根据应用和服务对物联网节点分群分簇,每簇会有一个节点负责搜集数据并将集合的数据传到网关,簇头的选择需要考虑节点的存储、过滤和聚合能力,为了不致过早耗掉簇头的电能,每簇内各节点可能需要轮流担任簇头。由于物联网节点数量密集,覆盖范围宽,而且新的物品的加入将要求节点添加或删除等,在节点的配置上要从减少安装和维护成本考虑,要尽可能少用人工干预,其次是网络发现技术,要求节点能够发现在其所处环境内的相邻节点的存在和身份,以便协商分享的任务,在物联网中网络是动态变化的,新的物品的加入将改变网络的拓扑,而且物品的特征还会随自治程度而变,物联网应具有基于智能匹配来对网中的节点自动发现和指配、自动部署与激活、解除激活和性能监视,还可以在任何时间对所分配的作用进行调整和调度。
有些节点由于制造的不一致,缺陷需要在出厂前校正,由于环境影响、老化等原因使所感知的数据有偏差,还需要在数据收集时校正或去除,还需要考虑传感器与环境之间的耦合关系。在感知数据的报送方式上,分为主动式和反应式两种。物联网收集的数据如果原封不动地存储将占用海量存储资源,必须通过压缩去掉重复冗余的数据,并且需要开发图像信息检索方法和搜索引擎,以有效提高物联网设施的利用效率。收集的数据不限于被感知物件的信息,还包括与事件的发生可能有相关性的政府数据、市民产生的数据等,要在认证安全、隐私保护等方面对数据进行过滤与正确性的确认。为了全面准确提供智能决策,希望有多源甚至异构的数据,通过多数判决和推理分析,去逼近真实环境,最后利用专家系统和数学模型,参考历史数据,综合异构来源的多种信息,进行分析推理,给出决策。
物联网需要有网管,控制物联网节点的休眠和叫醒,检测和登记节点的移动、发现相邻节点,并且在一个特定区域内均衡和调度传感任务等。需要关注物联网能量获取与存储及节能问题,实现能量测量和电量不足的预报以及动态功率优化等能量管理。从安全与隐私来看,物联网是双刃剑,它能对生产安全、反恐维稳和家居安全起积极作用,但如果感知数据偏差太大和判决失误,将弄巧反拙,因此对物联网的可靠性和安全及隐私需要足够重视。
物联网是两化融合的切入点,也是民生服务的新亮点,其应用面很宽,将带动新的产业特别是现代服务业的发展,其社会效益高于经济效益。物联网看似门槛不高,但如何在给定任务的情况下最大化网络的生命周期和最小化组网及应用成本均是严峻的挑战。低成本、高可靠、长寿命的传感器和RFID是物联网推广应用的前提,数据挖掘与智能分析是体现物联网效益的关键,也是物联网的薄弱环节。当前对物联网的理论和技术的研究还落后于应用示范,未来需要在物联网技术方面加大创新开发力度。同时还要重视统筹规划、资源共享,务求实效。

现在物联网的行业的发展空间是十分强大的,并且很多人也抓住了当下的时代机遇,将物联网行业发扬得很光大,并且很多人也都从中获得了很多的经济效益,使他们过上了非常幸福美满的生活。随着当下发展的趋势,这些行业在未来肯定也会有很大的发展空间,也会有更多的人会进入到这些行业之中。而很多人还存在一定的疑虑,物联网专业到底有前途吗?并且未来的发展空间到底有多大呢?那下面小编来和大家说一说。

首先,值得肯定的是物联网专业的前途非常的可观,并且发展空间也十分的强大。我们都知道当下物流行业十分流行,同时网络行业也是十分流行的。这两个大行业是并驾齐驱,同时也逐渐成为了人们生活中的主流方式。随着人们生活水平的提高,上网的速度也更加频繁了,这也是见证人们生活美满的一个因素。而在未来物联网肯定会有更大的发展趋势,因为现在人工智能手段变得非常良好,物联网的市场也非常的庞大,所以说就业前景非常好。

其次,物联网行业是国家重点发展的战略性,新兴产业之一,它是受到国家大力支持的。并且有很多高校设置专业,也是希望同学能够从事相关的专业,将这个行业发展的更加广大。与此同时,物联网是一门交叉性学科,也涉及到了各种技术的结合,所以说也需要高科技人才的支持。这也是物联网行业发展前景非常可观的一个重要原因。

最后,物联网专业就业前景十分良好,同学们可以积极参考一下,根据自己的喜好,看自己到底适不适合这个专业。如果报考这个专业,在未来的发展也是十分光明的。以上就是小编的建议,希望对你们有所帮助。

随着互联网的快速发展,物联网也在阔步前行,与此同时,物联网对人们的影响也越来越大。如今,诸多IT公司都大量投资物联网,以此将人与设备、设备与设备以及系统与系统连接起来。据市场研究机构IDC的研究人员估算,到2020年时,物与物联网的规模将是比人与人联网的规模高26倍。
如今,从人们与周围事物互动的角度来看,物联网已经在影响人们的日常工作。预计将来物联网还将发挥全新的作用,并将改变人们的交通、交流和协作的方式。为什么呢?以下10大原因将对此问题作出更好的解释。
1、让人们路途中的交通更加快捷
人们约有15%的交流时间花费在路上,约有17%的燃料消耗在等待红灯的过程中。道路上的传感器、交通视频摄像头以及道路的中央分隔带都将影响着汽车与驾驶员的“谈话”方式。通过监控行驶速度、交通信号灯、事故以及当前的路况等信息,编入程序的汽车,甚至是道路都将给驾驶员的移动设备发去最有效的行驶路线,从而减少交通时间,节省燃料,并让人们出行更安全。
2、预测产品的稳定性
在产品出货之后,买方与卖方之间的互动往往就会减少,如果双方没有新的交易或产品出现问题,那么买方与卖方之间的交流也几乎没有。预测技术能够监控产品的“稳定性”,从而在问题出现之前就能够及时地发现问题。在倡导消费者为先的时代,一家公司如果掌握了预测产品性能的监控技术,那将意味着这家公司将能够让消费者感到满意,并避免问题的出现。
3、创建更多的工作职位
数字朝代已经开创了IT工作职位的新时代。随着物联网的兴起,云和大数据相关的工作也越来越专业化。市场研究机构Gartner去年就发布报告称,首席数码官(CDO)的数量正在不断上升。Gartner还预测称,到2015年时,约有25%的公司将设立这样的工作职位,以此来管理公司数字,在这样的形势之下,数据专家也将成为公司的重要资产。在获得了大数据和分析的价值之后,人们也将开始看到更多的首席数据科学家、分析师、甚至是客户满意官员等相关的工作职位,甚至还会出现我们目前还没有想到的职位。
4、提供工作能力
社交媒体的崛起已经为人们的交流和团队协作开创了新的时代。像Box、Skype、Jive和Facebook等有价值的社交工具已经吸引了下一代工人的关注。视频交流和图像交流等也将节省人们的交流时间,同时也让这些社交工具与现代化的协调工作系统不分上下。
5、便于将非结构化数据转化成结构化数据
大数据不仅仅是“大”,而是“巨大”。大数据如果被很好地利用的话,那么将会给商业创造更多的价值,特别是在非结构化数据转化成结构化数据之后。分析数据并将这些分析后的数据整合到有用的信息之后,这些数据将会提供消费者、产品行为、市场状况、员工生产力以及更多的相关有用信息。
6、更利于环境保护
如今,感应器已经在一些办公大楼和家庭内运行,但展望未来,这种感应器将成为现代建筑基础设施的必需品。随着用户在房间或卧室内的移动,安装后的动作感应器也将能够按照用户需求打开或关闭灯光设施、加热器、空调、咖啡机和电视机等设备。这些感应器如今已经整合到盲人设备之中,并利用温度和光线等决定打开和关闭相关设备的时长。最终,这种感应器很好地帮助人们节能,节省资金并保护了环境。
7、更好地定位
物联网让位置追踪服务更加简捷。目前,手机、汽车甚至是医院内的联网设备都能够被定位,从而节省有价值的资源。诸多公司将能够很快地追踪他们业务的每一个细节,包括从库存到订单履约情况等,并根据这些位置信息来部署现场服务和员工。工具、工厂和汽车都将能够连接基于位置技术的网络之中,从而让整个链条更加有效。
8、更加智能化的沟通与服务
即使是水冷却机也能够连接到物联网,从而更好地让人们利用更多的时间。例如,水冷却机(或咖啡机、快餐店等)都能够更加智能化的记忆用户的个人偏好,并根据声音和动作激活技术提供相应的服务,甚至是按照用户的需求传递饮料,而不需要用户等候。
9、改变医生工作方式
物联网正在改变医生的工作方式、病人的体验以及整个医患关系。如今,病人的病情必须经过医生当面确诊后才能作出评估。将来,物联网将能够让医生直接读到病人身体相关的数据信息,从而让医生远程实时的掌握病人的信息。
10、根据天气状况安排工作
如今,天气预报主要依赖一些卫星和地面天气监测的结果而进行。将来,大量的感应器将会整合到不同的设备之中,以及空中和地面的数据接受站。使用大数据分析来更好地预测地球状况,将有利于人们更加熟练准确的掌握天气状况和气候变化情况,这样将能够进行更加准确的天气预报,从而让人们更好的规划一周的工作。从全球范围来看,物联网将意味着人们能够更加准确地预测气候变化趋势和自然灾害情况。

中国物联网产业发展前景:物联网将继续保持高速增长

1、发展前景:市场规模不断扩大,产业物联网占比逐渐上升

物联网是中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。中国以加快转变经济发展方式为主线,更加注重经济质量和人民生活水平的提高,采用包括物联网在内的新一代信息技术改造升级传统产业,提升传统产业的发展质量和效益,提高社会管理、公共服务和家居生活智能化水平。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。综合多方面的情况分析,前瞻认为未来6年中国物联网的发展将保持高速增长,到2027年市场规模超过7万亿元。


根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。

2、发展趋势:重点城市带动周边城市发展,分工协作格局将进一步显现

国内物联网产业已初步形成环渤海、长三角、珠三角,以及中西部地区等四大区域集聚发展的总体产业空间格局。其中,长三角地区产业规模位列四大区域的首位。未来中国物联网产业空间演变将呈现出三大趋势:


中国工业互联网产业发展前景及趋势预测

1、工业互联网发展趋势:步入快速发展阶段

工业互联网作为新一代信息技术与制造业深度融合的产物,

通过人、机、物的全面联网,促进制造资源泛在连接、d性供给与高效配置。工业互联网正在推动制造业创新模式、生产方式、组织形式和商业范式的深刻变革。在实体经济、数字经济、软件产业共同发展的新体系中,工业互联网成为我国制造业在中国制造2025目标下、工业40时代的新的发展思路。

工信部、财政部等部委最近密集出台了《工业互联网创新发展行动计划(2021-2023年)》《工业互联网+安全生产”行动计划(2021-2023年)》《工业互联网专项工作组2020年工作计划)》等多项旨在推进工业互联网发展的产业支持政策。业内普遍认为,随着产业支持政策的不断落地,工业互联网应用将进一步普及,产业发展也将进入快速发展期。在政策引导和市场推动的情况下,工业互联网行业仍然是一片蓝海。

我国工业互联网布局不断完善,且我国工业互联网基础设施布局各方面成果初现,但仍有很大进步空间。

2、工业互联网前景预测:工业互联网将随着物联网技术的进步而快速发展

考虑到工业互联网的跨界性质,很多产业可能将会从中受益,尤其是中小软件企业、互联网企业包括大数据、云计算等企业、智能制造企业等。作为物联网中的重要组成部分,工业互联网发展将会随着物联网技术的进步而得到快速发展,芯片、传感器、通信模组网络等行业的技术进步将会带动工业企业的新一轮效率提升,帮助电力、航空、医疗、铁路、能源等行业提高生产率。前瞻根据近年来的相关政策以及年复合增速测算出2027年中国工业互联网核心产业经济规模将达到243万亿元左右,渗透产业经济规模将达539万亿元,合计为782万亿元。这将为智能机器人、新型工业软件等软硬件领域带来发展机遇。

更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》、《中国工业互联网产业发展前景预测与投资战略规划分析报告》。

工业领域物联网发展趋势分析 传统工业加速向智能化转变
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
前瞻产业研究院数据显示,2016年我国物联网产业规模超过9000亿元人民币,同比增速连续多年超过20%。物联网作为通信行业新兴应用,在万物互联的大趋势下,市场规模将进一步扩大。随着行业标准完善、技术不断进步、国家政策扶持,中国的物联网产业将延续良好的发展势头,为经济持续稳定增长提供新的动力。移动互联向万物互联的扩展浪潮,将使我国创造出相比于互联网更大的市场空间和产业机遇。
物联网利用射频识别(RFID)、GPS、摄像头、传感器、传感器网络等感知、捕获、测量的技术手段,随时随地对物体进行信息采集和获取,实现智能化的决策和控制。因此,物联网在工业领域应用过程中,物联网相关技术和产品是智能工业的核心。
工业是物联网应用的重要领域。具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,可大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,传统工业加速向智能化转变。
根据前瞻产业研究院发布的《物联网行业应用领域市场需求与投资预测分析报告》测算,2014年,国内物联网在工业领域需求规模为1260亿元;2016年,国内物联网在工业领域需求规模为1804亿元。2017年,国内物联网在工业领域需求规模约为2354亿元。
物联网在工业领域应用问题分析
1、IT安全问题
和前几次由新的硬设备、技术所带来的工业革命不同,工业40是由互联网所带来的第四次工业革命。也因此,有66%的受访者认为IT安全是一大挑战,当企业的IT系统连上网络,随时可能有一些未知的威胁出现在仓储管理系统、机器设备或供应链当中。
2、制造系统管理问题
工业40除了带来生产效率之外,同时也改变传统制造业的思维。当智能生产真正落实后,将会对制造管理系统带来巨大的变革,且势必变得更为复杂,包括整体的生产物流、人机协同作业等改变,也让员工培训更显重要。
3、通讯基础设施建设问题
通讯网络是实现工业40的重要关键,但是要建立一个让所有组织都能够配合的网络,必须要有一个一致的接口、通讯标准和规范。目前许多标准都还未建立,例如工业通讯、工程、IT安全、数字化工厂、设备整合等都还未被纳入整体参考架构中。
物联网在工业领域应用前景及发展趋势预测
近年来,我国政府通过工业化与信息化融合战略正在大力推进物联网技术向传统行业中的深度渗透。工信部于2013年9月发布的《工业化与信息化深度融合专项行动计划(2013-2018年)》中重点提出的互联网与工业融合创新试点工作已经进入了全面实施阶段。
以物联网融合创新为特征的新型网络化智能生产方式正塑造未来制造业的核心竞争力,推动形成新的产业组织方式、新的企业与用户关系、新的服务模式和新业态,推动汽车、飞机、工程装备、家电等传统工业领域向网络化、智能化、柔性化、服务化转型,孕育和推动全球新产业革命的发展。
美国制造业巨头通用电气公司充分利用物联网技术,已推出了二十余种工业互联网/物联网应用产品,涵盖了石油天然气平台监测管理、铁路机车效率分析、提升风电机组电力输出、电力公司配电系统优化、医疗云影像等各个领域。AT&T基于GE的软件平台Predix开发M2M解决方案,越来越多的工业机器将通过M2M连接到网络。
例如:物联网应用在智能工厂,具有相当广泛的应用前景,经济效益和社会效益明显。导入物联网的智能工厂,至少可以实现以下五个功能,即:电子工单、生产过程透明化、生产过程可控化、产能精确统计、车间电子看板。通过这五大功能,不但可实现制造过程信息的视觉化,对于生产管理和决策也会产生许多作用。根据物联网在智能工业的产值贡献比例来看,2023年国内物联网在工业需求规模在7821亿元左右。

1、中国工业互联网行业竞争格局

从软件企业来看,工业互联网主要代表企业有用友、东方电信等,以Saas服务转型为战略目标。在制造业企业中,以三一重工、海尔等企业为代表,其优势是熟悉生产制造流程但云计算技术较为薄弱;在互联网企业,以BAT为代表,虽然云技术领先但是缺乏专业和全面的工业知识;在系统解决方案服务商方面,华为和宝信软件等带领行业可以制造企业提供基础设施、平台、应用服务等整体信息化服务,但云计算技术稍弱;此外,初创企业以昆仑数据、树根互联等代表企业为主,其领域专注度高,创始团队通常来自头部信息科技和工业企业,但资金实力较弱。

从我国工业互联网产业链企业区域分布来看,工业互联网产业企业主要分布在广东地区,其次是在浙江、北京地区;中部地区,如湖北、安徽、山西、河南等省份虽然有企业分布,但是数量较少。

从代表性企业分布情况来看,以北京为总部的百度公司、以山东济南为总部的浪潮信息、以江苏徐州为中心的徐工信息、以浙江杭州为总部的阿里巴巴公司、以广东深圳为中心的华为知名度较高。

2、中国工业互联网行业市场集中度

2019年8月工信部发布了国内前十大跨行业、跨领域工业互联网平台Top10清单,并对工业互联网平台研发创新能力、应用实现能力、发展能力做出评估,并表示中国重点工业互联网平台平均工业设备连接数达65万台。因此,前瞻通过对我国工业互联网平台设备总连接数测算中国工业互联网行业设备连接数集中情况。可见行业CR5占21%的市场,其中华为FusionPlant工业互联网平台设备连接数占比达14%。

3、中国工业互联网行业市场排名

2019年8月,工信部发布了国内前十大跨行业、跨领域工业互联网平台,确立了行业标杆。行业领先平台在设备联接数、数字模型数、工业APP数、活跃用户数、活跃开发者数等指标方面对比18年均有大幅提升。在2018-2019年,综合上述指标计算得出的“平台活力指数”从553提升至624。时隔一年,工信部于2020年12月发布《2020年跨行业跨领域工业互联网平台清单》(排名不分先后),列举出国内领先的15个工业互联网平台。时隔一年,我国工业互联网平台迅速发展。

4、中国工业互联网行业企业布局及竞争力评价

从各公司销售布局来看,除启明信息业务范围仅在国内,多数厂商在境内、境外均有布局,产品销售范围较广。

从企业业务竞争力来看,目前浪潮信息、用友网络在工业互联网行业的竞争力较大,二者工业互联网相关业务占比均为100%。剑桥科技、东方国信等厂商工业互联网业务营业收入紧随其后。汉得信息业务覆盖范围较单一、启明信息工业互联网主营业务产值较低,二者竞争力较弱。

5、中国工业互联网行业竞争状态总结

从五力竞争模型角度分析,由于工业互联网行业具有很强的规模效应,我国工业互联网行业企业较少,行业竞争较温和;工业互联网下游应用为制造业,相关企业规模较大,实力雄厚,对服务产品有较高的要求,具有较强的议价能力;行业提供的产品和服务对下游企业的生产运营产生的影响较大,行业内产品进入市场有较高的壁垒,也在一定程度上阻碍了新进入者,行业存在较少的新进入者威胁;从替代品威胁来看,行业处于起步阶段,且其下游需求应用具有特殊性,多数产品为定制性产品,行业外基本不存在替代产品。综合而言替代品威胁较低。

根据以上分析,对各方面的竞争情况进行量化,5代表最大,0代表最小,工业互联网行业的竞争情况如下图所示。

—— 以上数据来源于前瞻产业研究院《中国工业互联网产业发展前景预测与投资战略规划分析报告》

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13285410.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-08
下一篇 2023-07-08

发表评论

登录后才能评论

评论列表(0条)

保存