互联网始于1969年美国的阿帕网。通常internet泛指互联网,而Internet则特指因特网。这种将计算机网络互相联接在一起的方法可称作“网络互联”,在这基础上发展出覆盖全世界的全球性互联网络称互联网,即是互相连接一起的网络结构。互联网并不等同万维网,万维网只是一建基于超文本相互链接而成的全球性系统,且是互联网所能提供的服务其中之一。
中文名
互联网
外文名
internet
定义
电脑相互连接并沟通而成的网络
起源
美国的阿帕网(ARPANET)
开创时间
1969年
发展历程
internet表示的意思是互联网,又称网际网路,根据音译也被叫做因特网(Internet)、英特网,是网络与网络之间所串连成的庞大网络。这些网络以一组通用的协议相连,形成逻辑上的单一且巨大的全球化网络,在这个网络中有交换机、路由器等网络设备、各种不同的连接链路、种类繁多的服务器和数不尽的计算机、终端。使用互联网可以将信息瞬间发送到千里之外的人手中,它是信息社会的基础。
因特网始于1969年的美国。是美军在ARPA(阿帕网,美国国防部研究计划署)制定的协定下,首先用于军事连接,后将美国西南部的加利福尼亚大学洛杉矶分校、斯坦福大学研究学院、UCSB(加利福尼亚大学)和犹他州大学的四台主要的计算机连接起来。这个协定由剑桥大学的BBN和MA执行,在1969年12月开始联机。
另一个推动 internet发展的广域网是NSF网,它最初是由美国国家科学基金会资助建设的,目的是连接全美的5个超级计算机中心,供100多所美国大学共享它们的资源。NSF网也采用TCP/IP协议,且与internet 相连。
ARPA网和NSF网最初都是为科研服务的,其主要目的为用户提供共享大型主机的宝贵资源。随着接入主机数量的增加,越来越多的人把internet作为通信和交流的工具。一些公司还陆续在internet上开展了商业活动。随着internet的商业化,其在通信、信息检索、客户服务等方面的巨大潜力被挖掘出来,使internet有了质的飞跃,并最终走向全球。[1]
1968年
1968年,参议员Ted·Kennedy(特德肯尼迪)听说BBN赢得了ARPA协定作为内部消息处理器(IMP),特德肯尼迪向BBN发送贺电祝贺他们在赢得“内部消息处理器”协议中表现出的精神。
1978年
1978年,UUCP(UNIX和UNIX拷贝协议)在贝尔实验室被提出来,1979年,在UUCP的基础上新闻组网络系统发展起来。新闻组(集中某一主题的讨论组)紧跟着发展起来,它为在全世界范围内交换信息提供了一个新的方法。然而,新闻组并不认为是互联网的一部分,因为它并不共享TCP/IP协议,它连接着遍布世界的UNIX系统,并且很多互联网站点都充分地利用新闻组。新闻组是网络世界发展中的非常重大的一部分。
澳大利亚MOX集团是工业自动化领域的先驱之一, 作为世界领先的工控产品和方案提供者, MOX集团已成长为机构遍布于澳大利亚、欧洲、中东和中国的国际性企业。
MOX中国自动化有限公司是澳大利亚MOX集团在中国区域投资的独资公司。作为设计具有创新性、可 *** 作性、智慧型性产品的行业主导者,MOX坚持以客户的需求为奋斗的目标,不断开发新的产品功能,设计并制造一系列新型工业自动化控制产品。
基本介绍 中文名 :MOX 国家 :澳大利亚 地位 :工业自动化领域的先驱之一 机构 :澳大利亚、欧洲、中东 MOX集团,解决方案,能源管理,调度管理,物联网,产品介绍,硬体产品,软体产品, MOX集团 MOX公司以其世界领先的工业控制技术和创新产品开发理念,将软体核心技术与硬体平台巧妙结合,为用户量身定做具有针对性的解决方案。其中MOX OC开放控制器为用户提供一个性能灵活,高速而又经济的过程控制系统解决方案。MOX Unite 现场控制器作为一种先进的远程终端设备,采用模组化开放式的设计理念,将工厂层面的数据采集到调度中心。MOX603输入输出模组以其基于智慧型化微处理器的设计成为最符合当今工业控制需要的一种输入输出设备。源自LogicaCMG的MOSAIC SCADA软体和MD控制器进一步拓展了MOX产品的套用范围。 MOX 公司为世界各地的用户提供一种交钥匙的解决方案。从独立的小型系统到广泛的大型运用,公司几乎在每个工业领域都有丰富的经验。由于采用具有国际标准的管理理念和领先的产品技术,MOX工业控制产品已广泛地运用到采矿业、水处理、石油化工、制造业、能源开发及输送、公用事业和原材料加工等行业。 MOX公司通过与国际上众多知名企业的战略合作,以保证提供的服务和解决方案符合最新的技术发展。全面覆盖中国市场的行销和售后服务体系,更为用户提供了快捷的服务和有力的保障。 解决方案 能源管理 MOX提供的企业能源管理系统采用分散式计算机信息系统,由一级或多级监控中心组成。系统主要由三部分组成:能源管控中心、能源信息网路和现场监控单元。 企业能源管理系统主要的管控对象为企业生产经营活动所涉及到的水、电、气、风、油等各种能源介质。能源管理系统对企业的电力系统、动力系统(燃气、热力、氧氮氩等)、水道系统和部分环保数据实行集中监控和管理,从而实现能源系统的统一集中调度控制和经济结算。通过对能源系统实行集中监测和控制,一方面,实现从能源数据采集——过程控制——能源介质消耗分析——能源管理等全过程自动化、高效化、科学化管理、使能源管理与能源生产、使用的全过程有机结合起来,提升能源管理的整体水平。 另一方面,系统对生产过程中所发生的能源信息进行准确汇总,同时对能源采集设备的运行转况进行实时监控。基于系统强大的能源生产信息数据、制造执行系统的综合生产信息及能源信息、ERP销售成本和能源业务日常管理等信息数据,运用先进的数据处理与分析技术,实现能源系统的离线生产分析和管理功能,包括能源生产管理统计报表、平衡分析、质量管理、实绩管理、运行支持管理、预测分析等功能。 调度管理 建设生产调度管理系统的总体目标是为市政公司提供一套具备一定智慧型调度能力并在行业处于领先水平的综 合调度管理平台,通过将生产调度所需的各个子系统通过一个整合的综合性套用平台进行数据调度和集中展现,从而进一步提升生产调度中心的运营管理水平,提高工作效率和调度能力,保证管网和站点的安全、稳定、连续运行。DIMASIS为市政公司各个岗位的用户在Web浏览器、桌面和移动终端上进行生产调度管理提供了一个完整、智慧型、可伸缩的框架。DIMASIS是一整套生产调度所需要的子系统的集合,并通过对它们的整合,构成了一个智慧型的管理平台。 通过生产调度管理系统的实施,能满足和实现下列功能,并达到行业领先水平: 使调度人员利用一个系统平台掌控整个燃气或水务系统的运行情况,并通过该系统实现对管网和各站点的生产调度工作的线上处理; 通过集成的SCADA、CIS/TCMS、GIS、GPS/AVL以及MMS等功能,使得调度及维护人员可以清晰、明确、快速的应对突发事件以及日常维护需求; 实现公司日常生产管理的信息化,包括调度台帐、远程查询、各类报表等; 对生产数据进行深入的收集、统计、汇总和分析,并构建数据分析模型挖掘有效数据,为用户决策提供丰富、可靠、直观的依据。 物联网 MOX能够将国内外最先进的物联网技术和理念,结合城市供水、排水、供气、照明亮化的实际情况和具体需求,为用户构建最为先进和实用的物联网套用系统。MOX公司可提供从物联网套用整体解决方案、系统设计、软硬体产品、工程技术服务和培训等“一揽子”解决方案。 物联网项目旨在通过套用智慧型感测设备、射频识别设备、全球定位系统、无线数据通信技术等物联网相关技术,建立城市供水、排水、供气和照明亮化设施的智慧型感测网路,实现智慧型化识别、定位、跟踪、监控和管理,重点实施引水主干管网、燃气高压管线等的安全监测调度,确保供水、供气等市政公用设施的安全,保障社会经济持续稳定发展。 MOX公司作为全球最知名的自动化和信息化产品供应商之一,其软硬体产品广泛套用于燃气、水、冶金等行业的信息化系统中,在国内具有长期的备品备件提供能力、系统设备维护能力和工程技术服务能力。通过物联网技术的套用,能够解决集团公司及下属企业在生产经营中迫切需要解决的问题。同时总结成熟套用经验,制定市政公用事业物联网套用标准,在全行业范围进行推广,并实现物联网资源在社会层面的共享,带动产业发展。 产品介绍 硬体产品 MOX OC控制器 Unity控制器 网关控制器 IoNix控制器 I/O模组 MOXGRAF编程软体 软体产品 MOSAIC SCADA MEFASIS DIMASIS
本文分享自华为云社区《一文带你了解NB-IoT标准演进与产业发展》,作者:万万万。
我们都知道,物联网的场景和手机、电脑在使用的传统互联网是不太一样的。那么,就无线通信场景而言,物联网有什么样的特点呢?首先,感知层的物联网设备在进行数据收发的时候,那些数据包是比较小的,并且收发的频率也是比较低的,有的时候每天只需要发送不到十个数据。其次,为了提高物联网设备的使用寿命,这些设备对能源的消耗是比较小的,所以这也要求设备在通信的时候功耗也是要比较低的。
总结起来,就是无源、小包、偶发的通信需求。基于这样的场景需求,就要求通信网络必须要是功耗低,覆盖广的,也就是LowPowerWideArea的场景。
在LPWA场景当中,当下最热门的一项技术莫过于NB-IoT通信技术。它被广泛使用于现如今的公共事业、城市管理当中,所以了解NB-IoT的技术细节以及解决方案对学习物联网就显得很重要了。
本文将带大家详细了解NB-IoT标准演进与产业发展。
NB-IoT技术标准最早是由华为和沃达丰主导提出来的,之后又吸引了高通和爱立信等一些厂家。从一开始的NB-M2M经过不断的演进和研究,在2015年的时候演进为NB-IoT,在2016的时候,NB-IoT的标准就正式被冻结了。当然,NB-IoT的标准依然在持续的演进当中,在17年的R14当中就新增了许多特性,到了R14版本,NB-IoT具有了更高的速率,同时也支持站点定位和多播业务了。在2020年7月9日最新召开的会议上,NB-IoT这项技术已经被正式接纳为5G的一部分了。
这一事件对于NB-IoT来说有一个什么样的好处呢?当NB-IoT这项技术被归为5G的标准之后,也就是说,即使是通过NB-IoT接入网络的物联网设备,最终也可以连接5G核心网,享受5G的边缘计算、网络切片等一些服务。所以,这一事件对于NB-IoT来说是非常非常重要的。但是由于现阶段的NB-IoT并不支持接入5G网络,所以该技术在后续仍需要经过不断的演化和技术的演进才能进入5G网络当中。
图1全球运营商LPWA技术选择分布
从上图可知,全球大多数的运营商在进行LPWA技术选择的时候都是先选择去部署一张NB-IoT的网络,之后再去部署一张eMTC的网络。其原因在于运营商都是倾向于先去部署一张他们本来没有的网络,因为之前没有像NB-IoT这样的网络去支持低功耗广域网的场景,并且也从来没有专门为了设备去设计一张网络供物联网终端设备来使用。
之前所使用的运营商网络其实都是给人来使用的,为了方便人们的通信,所拥有的语音通信以及越来越高的传输速率等等。但是NB-IoT不一样,这张网络速率是非常慢的,人类去使用的话体验肯定是非常差的,但是这张网络对于底层的设备来说是非常合适的。原因之一是因为覆盖范围非常广,另一个原因是能耗低,速率低等。至于eMTC这张网络,它的速率相对于NB-IoT是要高的,并且还支持语音通信,所以它与用户现在正在使用的2G网络是比较相近的。所以在2G网络退网之后,运营商就可以选择使用eMTC去代替2G网络来进行使用,这就是大部分运营商选择先部署NB-IoT网络再部署eMTC网络的原因。
对于运营商来说,除了有选择技术的问题之外,另一个就是频谱选择的问题,因为这是一个避不开的问题。如果要满足低功率广域网的场景的话,网络的频段要够低,因为它既要满足广覆盖,还要满足网络的穿透性。大部分感知层的物联网设备,像气表、水表等,它们是被放在厨房的柜子里的,相当于是被层层遮蔽的,如果网络穿透力不够的话是没有办法跟设备进行连接的。
图2全球运营商NB-IoT频谱选择
同时,频段越低穿透性越强,频段越高穿透性越弱。所以由图2可以看到,对于运营商来讲,他们相当于把最合适的一部分频段都拿出来了。所以大部分的运营商都是在700到900M这一部分也就是SubG频段来进行部署。当然,也有少数的部分像中国联通他有一部分是放在1800M。所以在上文中提到的,NB-IoT网络主要是部署在SubG频段的,而不是说全部都是在SubG频段原因就在于此。
另外,由于NB-IoT的网络是基于4GLTE的网络的。所以运营商会在4G的基站中选择一部分基站去做软件升级来作为NB-IoT的基站。但是中国联通不一样,因为中国联通的4G基站就是基于3G基站升级得到的。所以就相当于它可以直接使用3G1800MHz的基站升级得到NB-IoT的基站,所以联通经过基站平滑升级之后,就直接在1800M使用NB-IoT网络,节省了很大的成本。这也就是为什么中国联通可以在1800MHz部署NB-IoT网络。
除了网络技术,基站和频段之外,如果想要使用这个网络也得有支持设备与基站连接的芯片。所以华为早在R13就推出了Boudica120芯片,由于它推出的比较早,所以芯片的功能并不是特别强,只支持SubG频段,并且也不支持移动性这些在R14才演进的特性。所以基于R14的一些新特性,华为又推出了Boudica150芯片来满足新特性的使用。
图3NB-IoT产业生态
图3为NB-IoT技术的应用情况,其实NB-IoT所涉及的领域是比较多的。像水表、气表、路灯、智能停车等等应用当中都有涉及。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)