2017-11-30请点蓝字>慎思行慎思行
文章来源中国人工智能学会,罗兰贝格公司
个人微信 helloSSX
人工智能概念介绍
人工智能是什么?人工智能是一门利用计算机模拟人类智能行为科学的统称,它涵盖了训练计算机使其能够完成自主学习、判断、决策等人类行为的范畴。人工智能、机器学习、深度学习是我们经常听到的三个热词。关于三者的关系,简单来说:机器学习是实现人工智能的一种方法,深度学习是实现机器学习的一种技术。机器学习使计算机能够自动解析数据、从中学习,然后对真实世界中的事件做出决策和预测;深度学习是利用一系列“深层次”的神经网络模型来解决更复杂问题的技术。
人工智能从其应用范围上又可分为专用人工智能(ANI)与通用人工智能(AGI)。专用人工智能,即在某一个特定领域应用的人工智能,比如会下围棋并且也仅仅会下围棋的AlphaGo;通用人工智能是指具备知识技能迁移能力,可以快速学习,充分利用已掌握的技能来解决新问题、达到甚至超过人类智慧的人工智能。
通用人工智能是众多科幻作品中颠覆人类社会的人工智能形象,但在理论领域,通用人工智能算法还没有真正的突破,在可见的未来,通用人工智能既非人工智能讨论的主流,也还看不到其成为现实的技术路径。专用人工智能才是真正在这次人工智能浪潮中起到影响的主角。我们的讨论范围将聚焦在更具有现实应用意义的专用人工智能技术,具体讨论现有专用人工智能技术能带来的商业价值。
人工智能发展历史与现状
人工智能的发展历史
人工智能的概念形成于20世纪50年代,其发展阶段经历了三次大的浪潮。第一次是50-60年代注重逻辑推理的机器翻译时代;第二次是70-80年代依托知识积累构建模型的专家系统时代;这一次是2006年起开始的重视数据、自主学习的认知智能时代。在数据、算法和计算力条件成熟的条件下,本次浪潮中的人工智能开始真正解决问题,切实创造经济效果。
本次人工智能浪潮的驱动因素
近年来,人工智能应用领域市场规模、人工智能领域的资金投入都迅速增长,反映了社会与市场整体对其认知程度与信心的高涨。驱动认知程度提高的一方面因素是技术本身的提高,包括数据、算法、算力,使得人工智能技术真正为商业应用创造了价值;另一方面,大数据、物联网、云计算等技术为人工智能的发展打下了良好基础。
高质量、大规模的大数据成为可能。1986—2007年,全球单日信息交换量增长了约220倍,全球信息储存能力增加了约120倍。海量数据为人工智能技术的发展提供了充足的原材料。
计算力提升突破瓶颈:以GPU为代表的新一代计算芯片提供了更强大的计算力,使得运算更快,同时在集群上实现的分布式计算帮助人工智能模型可以在更大的数据集上运行。
机器学习算法取得重大突破:以多层神经网络模型为基础的算法,使得机器学习算法在图像识别等领域的准确性取得了飞跃性的提高。
社会理解与接受程度广泛提升:随着社会信息化及互联网/移动互联网的普及,以及受AlphaGo等大量热点舆论事件影响,全社会对人工智能的态度已逐渐从怀疑、恐惧转变为好奇、接受和认同。
物联网、大数据、云计算技术提供了人工智能的发展基础
物联网、大数据、云计算技术为人工智能技术的发展提供了其所需要的关键要素。物联网为人工智能的感知层提供了基础设施环境,同时带来了多维度、及时全面的海量训练数据。大数据技术为输入数据在储存、清洗、整合方面做出了贡献,帮助提升了深度学习算法的性能。云计算的大规模并行和分布式计算能力带来了低成本、高效率的计算力,并降低了计算成本。
人工智能产业发展状况
技术方向方面
人工智能方向的企业目前主要分为两类:专注于技术研发的通用型人工智能企业,如DeepMind、 Facebook AI Research、Google Brain与Baidu AI等,以及专注于人工智能技术应用的专用型人工智能企业。通用型人工智能由于研发技术难度大,目前多由巨头互联网公司在进行布局,短期内没有明确的技术突破前景。专用型人工智能企业数量众多,但其发展仍然受制于需要人工标注的数据限制。
应用方向方面
从应用方向上来看,金融、医疗、汽车、零售等数据基础较好的行业方向应用场景目前相对成熟,相关方向企业的融资热度也较高。以自动驾驶领域为例,谷歌、百度、特斯拉、奥迪等科技和传统巨头纷纷加入;人工智能在金融领域的智能风控、智能投顾、市场预测、信用评级等领域都有了成功的应用;在医疗领域,人工智能算法被应用到新药研制,提供辅助诊疗、癌症检测等方面都有突破性进展,凡此种种,不一而足。
地域发展方面
纵观全球人工智能产业的发展,我们可以发现:全球领先的创新高点散落在各个国家,如美国纽约与硅谷、英国伦敦、以色列,以及中国的北京、上海与深圳。人工智能技术本身具有高流通、易传导的性质,在全球信息流通开放的大环境下,人工智能的发展不再受限于国家或地域。
借助于良好的人才基础、巨大的应用市场、强有力的风投基金支持,中国人工智能企业的发展势头良好,在全球处在优势领先地位。中国的人工智能企业数量、专利申请数量以及融资规模均仅次于美国,位列全球第二。在国内,计算机视觉、服务机器人、自然语言处理方向的人工智能企业占据了人工智能企业个数的一半以上。北京、上海、深圳作为国内人工智能创新的高地,其相关企业数量占据了国内企业总数的近80%。
人工智能未来发展的预测
我们认为,短期内构建大型的数据集将会是各企业与研究机构发展的重要方向。同时,机器学习技术会更注重迁移学习与小样本学习等方向,近期AlphaGo Zero在无监督模式下取得的惊人进步充分体现了此方向的热度。长期来看,通用型人工智能的发展将依赖于对人脑认知机制的科学研究,其发展前景目前尚处于无法预测的状态。
在商业应用方面,短期内,专用型人工智能将会在数据丰富的行业、应用场景成熟的业务前端(如营销、服务等)取得广泛的应用。长期来看,正如国际人工智能领域著名学者Michael IJordan所说,人工智能技术将能在边际成本不递增的情况下将个性化服务普及到更多的消费者与企业,从细分行业的特定应用场景应用到更加普世化的情景。
编辑 YibinP
推荐阅读
合作社发展电子商务营销是一种新的营销形式,目前在全国各地都只是起步阶段,但也不乏成功案例。国外经验表明,合作社借助电子信息平台开展农产品营销是大有作为的,很值得合作社结合各自特点进行有针对性的探索。目前,合作社电子商务营销主要有如下三种形式:一是合作社自办网站。通过网络与客商进行产销对接,将产品销到国内外。例如,北京市已有200多家合作社建立了自己的网站或网页。北京大兴区建立电子商务交易体系营销模式,初步建立“网上交易,网下配送”架构,2009年,农副产品电子商务成交额达到1000余万元,做出了创新性探索。
二是网上开店。合作社可以进驻阿里巴巴、淘宝等网上交易平台,实现合作社农副产品的网上营销。相比合作社自办运营网站,入驻成熟电子商务平台的成本相对较低。
三是网上联合社营销模式。例如,2008年,北京房山区依托“房山农合网”构建了“网上联合社”,网上联合社开通运营两年来,为120家合作社建立网店,推介会员产品562种,涉及成员及带动农户20059户,累计实现经营收入1700万元。网站设立合作社简介、产品展厅、管理建设、技术服务等栏目,为合作社进行产品宣传,为成员提供技术服务,树立合作社文化形象,加强合作社对外交流。“网上联合社”信息服务平台的开通,为合作社成员拓宽了收入渠道,提高了成员的收入。
合作社在发展电子商务时,需要解决如下问题:一是人才短缺,特别是专业的电子商务人才,而吸引优秀的电子商务专业人才对单个合作社来说成本很高,对销售人员进行电子商务专业培训可能更适合目前合作社的发展实际;二是资金困难,要运营好网站需要有持续的资金投入,很多合作社在发展电子商务初期会有投入,而在后期往往荒废,导致前功尽弃;三是合作社品牌推广存在一定难度,尤其是规模不大的合作社,其生产的农副产品不具备规模效应或品牌效应,进行电子商务时的投入产出比很低。
案例:海宁市长安镇城东村三联果蔬专业合作社
浙江省海宁市长安镇城东村三联果蔬专业合作社是一家专业从事葡萄生产及销售的合作社,基地面积3000亩,年产葡萄6600吨。2011年3月合作社花费约2万元开设网站,致力于宣传和推广“圣优”葡萄,由城东村的大学生村官提供照片、新闻等资料,提高市场知名度,同时构建一个完整的信息平台,便于供需双方沟通,扩大销售。网站建立之后,不断受到批发商和消费者的关注,近来日均点击量有四五百人次,来自山东、江西和广州、杭州、金华等地的批发商都前来采购葡萄,加上零售,有些品种的葡萄供不应求。
合作社与“某网站”合作,参与搜索排名。按点击付费,每一点击8角钱,每天需要三四百元。虽然费用不低,但是考虑到“某网站”覆盖了九成以上的中国网民,能给合作社的葡萄品牌带来巨大的客户流量,转为商机和收益,当时合作社断定这还是物有所值的。而到网站运营之后,合作社很快就意识到这不是“物有所值”,而是“物超所值”。合作社负责人介绍,采取网络营销之后,品牌知名度上去了,销售量和销售价格同比去年增加了20%以上。如今整个销售收入中,经由网络平台获得信息渠道并带来的收入占了30%,据初步估算,这笔收入有100万元左右,比起建设网站所需的2万元和后期维护费用,无疑是大巫见小巫。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)