物联网终端的物联网终端的基本原理及作用

物联网终端的物联网终端的基本原理及作用,第1张

主要包括单一功能终端和通用智能终端两种。
单一功能终端该类终端一般外部接口较少,设计简单,仅满足单一应用或单一应用的部分扩展,除了这种应用外,在不经过硬件修改的情况下无法应用在其他场合中。目前市场上此类终端较多,如汽车监控用的图像传输服务终端、电力监测用的终端、物流用的RFID终端,这些终端的功能单一,仅适用在特定场合,不能随应用变化进行功能改造和扩充等。因功能单一,所以该类终端的成本较低,也比较好标准化。
通用智能终端该类终端因考虑到行业应用的通用性,所以外部接口较多,设计复杂,能满足两种或更多场合的应用。它可以通过内部软件的设置、修改应用参数,或通过硬件模块的拆卸来满足不同的应用需求。该类模块一般涵盖了大部分应用对接口的需求,并具有网络连接的有线、无线多种接口方式,还扩展了如蓝牙、WIFI、Zigbee等接口,甚至预留一定的输出接口用于物联网应用中对“物”的控制等。该类终端开发难度大,成本高,未标准化,目前市面很少。 主要包括数据透传终端和非数据透传终端。
数据透传终端该类终端将输入口与应用软件之间建立起数据传输通路,使数据可以通过模块的输入口输入,通过软件原封不动的输出,表现给外界的方式相当于一个透明的通道,因此叫数据透传终端。目前,该类终端在物联网集成项目中得到大量采用。优点是很容易构建出符合应用的物联网系统,缺点是功能单一。在一些多路数据或多类型数据传输时,需要使用多个采集模块进行数据的合并处理后,才可通过该终端传输。否则,每一路数据都需要一个数据透传终端,这样会加大使用成本和系统的复杂程度。目前市面上的大部分通用终端都是数据透传终端。
非数据透传终端 该类终端一般将外部多接口的采集数据通过终端内的处理器合并后传输,因此具有多路同时传输优点,同时减少了终端数量。缺点是只能根据终端的外围接口选择应用,如果满足所有应用,该终端的外围接口种类就需要很多,在不太复杂的应用中会造成很多接口资源的浪费,因此接口的可插拔设计是此类终端的共同特点,前文提到的通用智能终端就属于此类终端。数据传输应用协议在终端内已集成,作为多功能应用,通常需要提供二次开发接口。目前市面上该类终端较少。

有相同点,也有不同点。
相同点:功能测试、边界分析测试、性能测试,其它部分由于各自特性或关注点不同需要进行特殊的测试。
不同点:数据产生来源。
传统软件或者普通互联网软件的数据都是由人输入的,服务端都要对接收到的数据进行预处理,凡是数据不符合要求时都会返回让用户重新输入数据。比如用户使用银行APP在线转账为例,如果用户输错了不存在的收款账户或者在转账金额中输入了字母(一般客户端都会对金额输入做控制防止金额栏输入字母这种事发生)那么服务端就会捕捉到这个入参错误并且发回客户端要求重新输入,甚至为了提高开发效率好多开发框架已经把入参合规性检测整合到开发框架中了。
但是物联网的数据基本上都不是靠人工输入产生的,而且好多物联网应用设备长期在高温高湿的环境下使用,只能使用比较低端的 *** 作系统和编程语言,更容易因终端程序错误及网络问题产生数据错乱问题

本实验采用W25Q64芯片

W25Q64是华邦公司推出的大容量SPI

FLASH产品,其容量为64Mb。该25Q系列的器件在灵活性和性能方面远远超过普通的串行闪存器件。W25Q64将8M字节的容量分为128个块,每个块大小为64K字节,每个块又分为16个扇区,每个扇区4K个字节。W25Q64的最小擦除单位为一个扇区,也就是每次必须擦除4K个字节。所以,这需要给W25Q64开辟一个至少4K的缓存区,这样必须要求芯片有4K以上的SRAM才能有很好的 *** 作。

W25Q64的擦写周期多达10W次,可将数据保存达20年之久,支持27~36V的电压,支持标准的SPI,还支持双输出/四输出的SPI,最大SPI时钟可达80Mhz。

一。SPI接口原理

(一)概述
高速,全双工,同步的通信总线。

全双工:可以同时发送和接收,需要2条引脚

同步: 需要时钟引脚

片选引脚:方便一个SPI接口上可以挂多个设备。

总共四根引脚。

(二)SPI内部结构简明图
MISO: 做主机的时候输入,做从机的时候输出

MOSI:做主机的时候输出,做从机的时候输入

主机和从机都有一个移位寄存器,在同一个时钟的控制下主机的最高位移到从机的最高位,同时从机的最高位往前移一位,移到主机的最低位。在一个时钟的控制下主机和从机进行了一个位的交换,那么在8个时钟的控制下就交换了8位,最后的结果就是两个移位寄存器的数据完全交换。

在8个时钟的控制下,主机和从机的两个字节进行了交换,也就是说主机给从机发送一个字节8个位的同时,从机也给主机传回来了8个位,也就是一个字节。

(三)SPI接口框图
上面左边部分就是在时钟控制下怎么传输数据,右边是控制单元,还包括左下的波特率发生器。

(四)SPI工作原理总结
(五)SPI的特征
(六)从选择(NSS)脚管理
两个SPI通信首先有2个数据线,一个时钟线,还有一个片选线,只有把片选拉低,SPI芯片才工作,片选引脚可以是SPI规定的片选引脚,还可以通过软件的方式选择任意一个IO口作为片选引脚,这样做的好处是:比如一个SPI接口上挂多个设备,比如挂了4个设备,第二个用PA2,第三个用PA3,第四个用PA4作为片选,我们

跟第二个设备进行通信的时候,只需要把第二个片选选中,比如拉低,其他设备的片选都拉高,这样就实现了一个SPI接口可以连接个SPI设备,战舰开发板上就是通过这种方法来实现的。

(七)时钟信号的相位和极性
时钟信号的相位和极性是通过CR寄存器的 CPOL 和 CPHA两个位确定的。

CPOL:时钟极性,设置在没有数据传输时时钟的空闲状态电平。CPOL置0,SCK引脚在空闲时为低电平,CPOL置1,SCK引脚在空闲时保持高电平。

CPHA:时钟相位 设置时钟信号在第几个边沿数据被采集

CPHA=1时:在时钟信号的第二个边沿
CPOL=1,CPHA=1,

CPOL=1表示时钟信号在没有数据传输时即空闲时的状态为高电平。如果CPHA=1,那么数据就在时钟信号的第二个边沿即上升沿的时候被采集。

CPOL= 0,CPHA=1, CPOL=0表示时钟信号在没有数据传输时即空闲时的状态为低电平。

如果CPHA=1,那么数据就在时钟信号的第二个边沿即下降沿的时候被采集。

CPHA=0时:在时钟信号的第一个边沿
CPOL=1,CPHA=0,

CPOL=1表示时钟信号在没有数据传输时即空闲时的状态为高电平。如果CPHA=1,那么数据就在时钟信号的第一个边沿即下降沿的时候被采集。

CPOL= 0,CPHA=0, CPOL=0表示时钟信号在没有数据传输时即空闲时的状态为低电平。

如果CPHA=1,那么数据就在时钟信号的第一个边沿即上升沿的时候被采集。

为什么要配置这两个参数

因为SPI外设的从机的时钟相位和极性都是有严格要求的。所以我们要根据选择的外设的时钟相位和极性来配置主机的相位和极性。必须要与从机匹配。

(八)数据帧的格式和状态标志
数据帧格式:根据CR1寄存器的LSBFIRST位的设置,数据可以MSB在前也可以LSB在前。

根据CR1寄存器的DEF位,每个数据帧可以是8位或16位。

(九)SPI中断
(十)SPI引脚配置 (3个SPI)
引脚的工作模式设置
引脚必须要按照这个表格配置。

二。SPI寄存器库函数配置

(一)常用寄存器
(二)SPI相关库函数
STM32的SPI接口可以配置为支持SPI协议或者支持I2S音频协议。默认是SPI模式,可以通过软件切换到I2S方式。

常用的函数:

1 void SPI_Init(SPI_TypeDef SPIx, SPI_InitTypeDef

SPI_InitStruct);//SPI的初始化

2 void SPI_Cmd(SPI_TypeDef SPIx, FunctionalState NewState); //SPI使能

3 void SPI_I2S_ITConfig(SPI_TypeDef SPIx, uint8_t SPI_I2S_IT,

FunctionalState NewState); //开启中断

4 void SPI_I2S_DMACmd(SPI_TypeDef SPIx, uint16_t SPI_I2S_DMAReq,

FunctionalState NewState);//通 过DMA传输数据

5 void SPI_I2S_SendData(SPI_TypeDef SPIx, uint16_t Data); //发送数据

6 uint16_t SPI_I2S_ReceiveData(SPI_TypeDef SPIx); //接收数据

7 void SPI_DataSizeConfig(SPI_TypeDef SPIx, uint16_t SPI_DataSize);

//设置数据是8位还是16位

8 其他几个状态函数

void SPI_Init(SPI_TypeDef SPIx, SPI_InitTypeDef

SPI_InitStruct);//SPI的初始化
结构体成员变量比较多,这里我们挑取几个重要的成员变量讲解一下:

第一个参数 SPI_Direction 是用来设置 SPI 的通信方式,可以选择为半双工,全双工,以及串行发和串行收方式,这里我们选择全双工模式

SPI_Direction_2Lines_FullDuplex。

第二个参数 SPI_Mode 用来设置 SPI 的主从模式,这里我们设置为主机模式 SPI_Mode_Master,当然有需要你也可以选择为从机模式

SPI_Mode_Slave。

第三个参数 SPI_DataSiz 为 8 位还是 16 位帧格式选择项,这里我们是 8 位传输,选择SPI_DataSize_8b。

第四个参数 SPI_CPOL 用来设置时钟极性,我们设置串行同步时钟的空闲状态为高电平所以我们选择 SPI_CPOL_High。

第五个参数 SPI_CPHA

用来设置时钟相位,也就是选择在串行同步时钟的第几个跳变沿(上升或下降)数据被采样,可以为第一个或者第二个条边沿采集,这里我们选择第二个跳变沿,所以选择

SPI_CPHA_2Edge

第六个参数 SPI_NSS 设置 NSS 信号由硬件(NSS 管脚)还是软件控制,这里我们通过软件控

制 NSS 关键,而不是硬件自动控制,所以选择 SPI_NSS_Soft。

第七个参数 SPI_BaudRatePrescaler 很关键,就是设置 SPI 波特率预分频值也就是决定 SPI 的时

钟的参数 , 从不分频道 256 分频 8 个可选值,初始化的时候我们选择 256 分频值

SPI_BaudRatePrescaler_256, 传输速度为 36M/256=140625KHz。

第八个参数 SPI_FirstBit 设置数据传输顺序是 MSB 位在前还是 LSB 位在前, ,这里我们选择

SPI_FirstBit_MSB 高位在前。

第九个参数 SPI_CRCPolynomial 是用来设置 CRC 校验多项式,提高通信可靠性,大于 1 即可。

设置好上面 9 个参数,我们就可以初始化 SPI 外设了。

初始化的范例格式为:

SPI_InitTypeDef SPI_InitStructure;

SPI_InitStructureSPI_Direction = SPI_Direction_2Lines_FullDuplex;

//双线双向全双工

SPI_InitStructureSPI_Mode = SPI_Mode_Master; //主 SPI

SPI_InitStructureSPI_DataSize = SPI_DataSize_8b; // SPI 发送接收 8 位帧结构

SPI_InitStructureSPI_CPOL = SPI_CPOL_High;//串行同步时钟的空闲状态为高电平

371

SPI_InitStructureSPI_CPHA = SPI_CPHA_2Edge;//第二个跳变沿数据被采样

SPI_InitStructureSPI_NSS = SPI_NSS_Soft; //NSS 信号由软件控制

SPI_InitStructureSPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; //预分频

256

SPI_InitStructureSPI_FirstBit = SPI_FirstBit_MSB; //数据传输从 MSB 位开始

SPI_InitStructureSPI_CRCPolynomial = 7; //CRC 值计算的多项式

SPI_Init(SPI2, &SPI_InitStructure); //根据指定的参数初始化外设 SPIx 寄存器

(三)程序配置步骤
三。W25Qxx配置讲解

(一)电路图
片选用的PB12

W25Q64 是华邦公司推出的大容量SPI FLASH 产品,W25Q64 的容量为 64Mb,该系列还有 W25Q80/16/32

等。ALIENTEK 所选择的 W25Q64 容量为 64Mb,也就是 8M 字节。(1M=1024K)

W25Q64 将 8M 的容量分为 128 个块(Block),每个块大小为 64K 字节,每个块又分为 16个扇区(Sector),每个扇区 4K

个字节。W25Q64 的最少擦除单位为一个扇区,也就是每次必须擦除 4K 个字节。这样我们需要给 W25Q64 开辟一个至少 4K 的缓存区,这样对 SRAM

要求比较高,要求芯片必须有 4K 以上 SRAM 才能很好的 *** 作。

W25Q64 的擦写周期多达 10W 次,具有 20 年的数据保存期限,支持电压为 27~36V,W25Q64 支持标准的

SPI,还支持双输出/四输出的 SPI,最大 SPI 时钟可以到 80Mhz(双输出时相当于 160Mhz,四输出时相当于 320M),更多的 W25Q64

的介绍,请参考 W25Q64 的DATASHEET。

在往一个地址写数据之前,要先把这个扇区的数据全部读出来保存在缓存里,然后再把这个扇区擦除,然后在缓存中修改要写的数据,然后再把整个缓存中的数据再重新写入刚才擦除的扇区中。

便于学习和参考再给大家分享些spi 的资料

stm32之SPI通信

>S1,X2,S5,S8四个。
窄带物联网(NarrowBandInternetofThings,NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180kHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。
NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网

我们先来讲讲物联网AR是什么

实际上,物联网并不是一个新概念,但为什么物联网,仍然可以与大数据和云计算技术一起列入第三次信息化浪潮的核心技术,其中一个关键原因就是物联网可以承载更多的新技术,同时物联网也可以深入到产业领域。

物联网在世界上也被称为传感器网络,这是继计算机、互联网和移动通信网络之后的信息产业浪潮,世界上的一切,从手表和钥匙到汽车和建筑,只要嵌入一个微感应芯片,变得智能化,物体就可以自动说话。

借助无线网络技术,人们可以与物体对话,与物体交流,这就是物联网,影片中的场景,通过物联网的逐步实现和推广,每个人的生活都会接近,所谓物联网,在中国也叫传感网,是指将各种信息传感设备与互联网相结合而形成的巨大网络。

ICT信息管理中心负责物联网本地管理,它是物联网信息服务的基础的管理中心,为本地用户提供管理、计划和解析服务;国家物联网信息管理中心负责制定和发布全国总体标准,负责与国际物联网互联,管理企业物联网管理中心;国际物联网信息管理中心负责制定和发布国际物联网框架性物联网标准,负责与各个国家的物联网互联,协调、指导和管理各个国家的物联网信息管理中心等。

重点是在增强虚实结合力、提高交互体验方面,展锐可运用人工智能技术进行空间计算,完成空间定位、地图构造、虚实结合和实时遮挡等,实现厘米级/1°以内的空间定位技术,实现人工智能与5G、AR的结合,更好地进行空间计算,准确定位、地图构建、虚实结合和实时遮挡。

那么全息美与物联网AR又有什么区别呢?

全息美是一种全新的美容人脸扫描技术,利用AR技术,运用的扫描数据进行分析,短时间内分析脸部的情况,进行判断脸部的缺陷与不足,比如皮肤的性质、类型,确定以后,进行精准调整,这就是全息美,它属于医美行业的互联网技术。

物联网连接物理和虚拟世界,物联网近年来成为企业竞争配置的产业,其发展状况良好,在市场上应用反馈也良好,特别是在智能城市、智能家庭、智能安全、工业物联网等方面取得了良好的反响,在物联网应用更广泛的落地时,物联网的各种技术难题。

其中,物联网的重点发展领域包括推进传感器、网络切片、高精度定位等技术创新,协同发展云服务和边缘计算,培育汽车网络、医疗网络、家庭网络产业、医疗网络、医疗网络让整个社会更加体验更真实。

用于进入网站。
中国移动物联网开放平台是由中国移动打造的PaaS物联网开放平台。平台能够帮助开发者轻松实现设备接入与设备连接,提供综合性的物联网解决方案。
中国移动通信集团有限公司是一家基于GSM、TDSCDMA和TDLTE制式网络的移动通信运营商,中国移动业务主要包括移动语音和数据业务,有线宽带以及其他信息和通信服务。

不是。

IOT(Interoperability Test,互 *** 作测试)是多厂商运营环境形成的技术基础。只有完成Iu接口的IOT,才能保证不同厂家的无线接入网与核心网互联互通,也只有完成Uu接口的IOT,才能保证每一款手机与无线接入系统之间的互联互通。从世界上已经完成的3G设备选型中可以看出,有一个非常明显的趋势就是,同一运营商大多选择二至三家厂商的设备,来组建自己的3G网络,形成多厂商设备的运营环境。所以,不同厂商之间的IOT(互 *** 作测试)对3G时代就显得格外重要。IOT已经被摆在非常重要的战略地位,为此,信息产业部也特意组织所有参加信息产业部3G技术试验的系统厂家和手机厂家进行Uu/Iu接口的互 *** 作IOT测试来验证各厂家系统之间和手机与系统之间的互通性。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13291525.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-09
下一篇 2023-07-09

发表评论

登录后才能评论

评论列表(0条)

保存