如何定义工业物联网 (IIoT) 平台?
工业物联网平台 是一种工业物联网软件,它使组织能够安全地管理工业物联网生态系统中所有连接的人、系统和对象。
在界定工业物联网平台时,我们应该认识到,物联网已经创造了一个新的整合水平。随着成千上万的工业物联网设备接入网络,企业需要管理比以往更多的端点。然而,这不是一个简单的设备问题,工业物联网实际上是一个由人、系统和对象组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理生态系统的每一个元素。
工业物联网平台有哪些不同类型?
虽然工业物联网平台研发的初衷是对工业物联网的设备和数据进行管理和控制,但为了适应不同的用例,已经开发了许多不同类型的平台。事实上,工业物联网平台很难分类,反而工业物联网平台供应商正在改进其平台产品,以满足客户需求和特定的业务需求。
工业物联网平台将提供不同的功能组合,包括工业物联网的端点管理和连接、物联网数据的采集、接收和处理、数据的可视化和分析,以及将物联网数据集成到业务流程和工作流中。在比较不同类型的平台时,应根据组织的业务需求和特定的IT基础设施,并将其与工业物联网的解决方案相匹配。
工业物联网平台应该具备哪些特点?
因此,最好的工业物联网平台因组织而异,单个平台功能集无法为每个用例提供足够的解决方案。但是,任何一个工业物联网平台都应该具备以下特点:
安全
安全性是工业物联网平台的核心,它不仅可以保护所有物联网端点免受外部网络攻击,还可以处理来自组织内部的潜在恶意活动。
连接性
每一个工业物联网设备都必须快速、安全地进行配置,并对其生命周期的所有阶段进行管理,包括在设备配置、注册、激活、挂起、未挂起、删除和按需重置时对其进行跟踪和授权。
集成
集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备与不同的企业应用、云服务、移动应用和传统系统无缝、安全地连接和共享信息。
识别
工业物联网平台可以支持最广泛的物联网设备。无论在工业物联网架构中的任何地方,都能自动感知物联网设备的存在,建立安全连接,并能快速建立设备凭据,或在需要时自动分配。
分析
物联网设备大大增加了组织中的数据量。分析工业物联网应该是工业物联网平台最强大的功能之一。它可以对工业物联网数据进行适当的可视化和分析,为改进数据驱动的决策提供实际的见解。
管理多个工业物联网传感器很简单,但如今,企业拥有数十万台工业物联网设备来执行遍及组织内部的众多任务。工业物联网设备有多种形状和尺寸,没有通用的工业物联网标准或连接方式。管理一个工业物联网网络意味着能够监控一系列异构的工业物联网设备。
如今,工业物联网(IIoT)平台为工业物联网在几乎所有行业的快速发展提供了解决方案。工业物联网平台能够将设备和企业应用软件完美融合,使数据在互联的人、系统和对象之间无缝、安全地流动。工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。
所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。欧洲著名的工业企业:戴勒姆-奔驰汽车公司:欧洲最大的轿车制造商之一。除生产汽车外还生产坦克、舰艇和飞机引擎。大众汽车公司:德国最大的汽车制造公司。也是欧洲主要的汽车制造商。西门子公司:德国最大的电气工业公司。也是世界最大的电气、电子生产制造商之一。巴斯夫公司:德国三大的化学工业公司之一。拜尔公司:德国三大的化学工业公司之一。通用电气-德律风根公司:德国电子、电气第二大公司。赫希斯特公司:德国三大的化学工业公司之一。蒂森公司:德国和欧洲最大的钢铁制造商。鲁尔煤炭公司:德国最大的采煤业巨头。曼内斯曼公司:德国第二大钢铁制造商。世界的主要钢铁制造商之一。工业复兴公司:意大利最大的国家持股公司。世界最大工业公司之一。菲亚特汽车公司:意大利最大的汽车制造商。瑞典滚珠轴承公司:瑞典机械工业龙头。北欧最大的工业企业。瑞典塞柯刀具公司:世界上生产著名的硬质含金刀具的生产商。瑞典爱立信通信公司。瑞典沃尔沃汽车公司。瑞士ABB电气集团。荷兰皇家壳牌集团。荷兰飞利浦电子公司。比利时ELECTLAVEL电力公司。比利时PETROFINA炼油公司。卢森堡阿尔贝德钢铁工业集团。法国埃尔夫阿奎坦公司。法国雷诺汽车公司。法国标志雪铁龙汽车集团。英国石油公司。欧洲空中客车公司。
智能制造可以利用工业物联网的技术,实现生产过程中的自动化控制和优化,其主要技术和应用包括:
传感器技术:利用传感器获取生产过程中的各种数据,包括温度、湿度、压力、电流、电压等信息,将其转换为数字信号进行处理和传输。
数据采集和处理:将传感器获取到的数据进行采集和处理,通过物联网技术将数据传输到云端或本地服务器进行存储和分析。
数据分析和挖掘:通过数据分析和挖掘技术,对生产过程中的数据进行深入分析和挖掘,提取有用信息并进行优化决策,实现生产效率和质量的提升。
自动化控制:通过控制器、执行器等设备,实现生产设备的自动化控制,包括开关机、调整参数、控制速度等 *** 作。
信息可视化:通过大屏幕、手机、平板等设备,将生产过程中的数据和信息进行可视化展示,实现对生产过程的实时监控和控制。
通过工业物联网的技术应用,智能制造可以实现生产过程的数字化、自动化、智能化和可视化,提高生产效率和质量,减少资源浪费和环境污染,为企业提供更多的商业价值和竞争力。
物联网与工业物联网、工业40的概念既有交集也有差异。物联网强调的是将生活和生产中一切硬件设备的连接;工业物联网是指在工业环境下,生产设备和产品的连接;工业40则涵盖整个制造生态系统。
随着工业化与信息化的深度融合,企业内部及企业间生产控制系统和生产管理系统互联互通的需求渐增,通过接入网络进而达到提高产品质量和运营效率的需求更为强烈,工业物联网应运而生。
工业物联网将生产过程的每一个环节、设备变成数据终端,全方位采集底层基础数据,并进行更深层面的数据分析与挖掘,从而提高效率、优化运营。
与物联网在消费行业的应用不同,物联网在工业领域的基础已经存在了几十年。如过程控制和自动化系统、工业化以太网连接和无线局域网(WALN)等系统已经在工厂运行多年,并接连可编程逻辑控制器(PLC)、无线传感器和射频识别技术标签(RFID)。但是在传统工业自动化环境下,一切都只是发生在工厂自己的系统里,从来没有与外部世界连接。
工业物联网相较于传统工业自动化有以下四个特点:数据收集范围:工业物联网利用RFID、传感器、二维码等手段随时获取产品从生产到销售到最终用户使用各个阶段的信息数据,而传统工业自动化的数据采集往往局限于生产质检阶段。
互联传输:工业物联网利用专用网络与互联网相结合的方式,实时准确地传递物体信息,对网络依赖性更高,更强调数据交互。
智能处理:工业物联网综合利用云计算、云存储、模糊识别、神经网络等智能计算技术,对海量数据和信息进行分析和处理,并结合大数据技术,深入挖掘数据价值。
自组织与自维护:工业物联网的每个节点为整个系统提供自己处理获得的信息或决策数据,当某个节点失效或数据发生变化时,整个系统会自动根据逻辑关系做出相应调整。
工业物联网是将具有感知、监控能力的各类采集或控制传感或控制器以及泛在技术、移动通信、智能分析等技术不断融入到工业生产过程各个环节,从而大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,最终实现将传统工业提升到智能化的新阶段。从应用形式上,工业物联网的应用具有实时性、自动化、嵌入式(软件)、安全性、和信息互通互联性等特点
以智能工厂为例在中国当前政策利好的环境下,未来15年仅在制造业,工业物联网就可创造1960亿美元的累计GDP增长。同样在新基建的推动下制造业企业有了更多值得期待的地方。
目前工厂自动化程度已经达到较高的水平,设备可以昼夜不停生产,企业人工成本下降了25%~30%。但是智能制造不等同自动化,工业互联网技术的潜力还显示在追求更高价值上,比如良率改善、数据决策等方面。
从发展趋势来看,智慧化转型已经成为社会各界共识,但并不是所有企业都像大企业那样具有较高的信息化基础和资本支撑。运营成本、技术难题、数据割裂以及资金问题成为了把企业挡在信息化浪潮之外致命壁垒,如何把企业扶上云端,成为了关键。
“企业搭建数字化平台,必须打好信息化地基,只要在信息化的基础上,才可以结合互联的平台采集数据,通过分析平台给企业带来价值。”图扑软件某负责人说道。
那么如何将SMT/PCB行业较高的自动化与优秀的信息化管理相融合,基于 Hightopo 给出可以提高制造的信息化能力的解决方案。
智慧管理运作方式通过工业监控系统,展现SMT贴片厂机械的实时运作状态。通过2D面板与3D模型结合,展示出设备的具体数据,例如贴片机的抛料数、工作时间、吸取数和产量;SPI监测出的良品数量和直通数量以及总产量,保证对印刷工艺的验证和控制;也包括自动光学检查(AOI)中监测PCB上各种不同的错装和缺陷的产品数量。产线上每小时的良率会直接传到可视化平台,如果良率低于设定的目标水平,就会驱动管理进行改善。硬件与软件结合,将“互联网+物联网+大数据+自动化设备”相互融合形成自我驱动效应。
智慧管理可视化系统通过对每一台设备数据进行整合,分析处理。形成产量、设备使用率和抛料率的统计,并且与历史数据组成直观的数据趋势图。为管理者提供可靠的数据,及时调节生产节奏提高生产效率反思工厂运作中的瑕疵与不足。利用平台和数据的驱动,将资源有效整合在一起,避免了信息不对称造成的资源浪费,为生产提供了有力支撑。
同样,智慧管理不应只体现在一体化的生产流程上,当人力需求减少的情况下,新技术则更应该为人服务,如工厂可视化平台可以显示出智能工位、 *** 作员的轨迹等数据。动态的展现方式,也促使管理者做出高效且更人性化的管理措施。
扩展图扑软件(Hightopo)是由厦门图扑软件科技有限公司独立自主研发,基于HTML5标准技术的Web前端2D和3D图形界面开发框架。非常适用于实时监控系统的界面呈现,广泛应用于电信网络拓扑和设备管理,以及电力、燃气等工业自动化 (HMI/SCADA) 领域。Hightopo 提供了一套独特的 WebGL 层抽象,将 Model–View–Presenter (MVP) 的设计模型延伸应用到了 3D 图形领域。使用 Hightopo 您可更关注于业务逻辑功能,不必将精力投入复杂 3D 渲染和数学等非业务核心的技术细节。
多年来数百个工业互联网可视化项目实施经验形成了一整套实践证明的高效开发流程和生态体系,可快速实现现代化的、高性能的、跨平台桌面Mouse/移动Touch/虚拟现实VR图形展示效果及交互体验。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)