物联网未来发展趋势?

物联网未来发展趋势?,第1张

物联网产业链全景梳理:共有四大层面

所谓产业链,是以生产相同或相近产品的企业集合所在产业为单位形成的价值链,是承担着不同的价值创造职能的相互联系的产业围绕核心产业,通过对信息流、物流、资金流的控制,在采购原材料、制成中间产品以及最终产品、通过销售网络把产品送到消费者手中的过程中形成的由供应商、制造商、分销商、零售商、最终用户构成的一个功能链结构模式。

从产业链条来看,物联网的产业链条由上而下可以分为感知层、传输层、平台层和应用层四个层级。

自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。

物联网产业链区域热力地图:企业主要分布在京津冀、珠三角与东部沿海等地区

从区域分布来看,目前我国物联网行业上市公司主要分布在京津冀、珠三角与东部沿海等经济发达地区。分布在北京和广东的企业数量最多,其中感知层上市企业主要集中在北京,应用层代表上市企业主要集中在广东。

物联网相关企业数量的分布与数字经济的发展情况相关。根据新华三发布的《2021年中国城市数字经济指数蓝皮书》,全国城市数字经济评分排名前十的城市分别为上海、深圳、北京、成都、杭州、广州、无锡、南京、重庆和苏州。根据中国企业数据库企查猫,目前中国物联网企业主要分布在华东和华南及中部的四川等地,特别以广东、江苏等省市为代表。整体来看,数字经济的发展在不断推动物联网的发展。

物联网产业上市公司业绩情况:产业整体毛利率较高

从物联网代表企业的业绩情况来看,物联网产业代表企业的毛利率均值达到36%,行业整体毛利率较高。从单独企业情况来看,行业主要上市公司的业务规模差距明显,毛利率水平也因业务侧重点的不同而呈现出分层差异。上市企业具体的业绩情况如下表所示:

更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》

1、延迟问题

延迟是指处理和分析捕获数据所需的时间。连接到互联网的设备必须在100毫秒内响应,有时甚至不到10毫秒。因此,计算过程必须尽可能本地化,以抵消远距离传输数据的固有延迟。
通过物联网中的边缘计算,计算将在源头附近完成,例如传感器,如果汽车上的传感器判断出将要发生碰撞,那么系统就必须具有足够的确定性,能够在一定的时间范围内部署安全气囊,如果在长距离传输数据方面有任何滞后,那就是根本不安全的。

2、带宽问题

运行软件和生成数据的大多数物联网设备需要链接到云以存储和进一步处理该数据。因此,需要大量的功率和带宽将IoT数据传输到云。

在物联网中使用边缘计算,组织可以减少互联网带宽的使用,因为可以在源附近处理大量数据。

例如,边缘计算相机可以通过分析警察仪表板的视频源来帮助执法机构减少带宽,相机摄像头可以实时生成大量的视频和音频记录,但只有在必要时才将相关数据发送到云端。

3、带宽成本问题

物联网应用程序生成大量相对低价值的时间序列数据。这意味着带宽成本,设备获得带宽的机会成本,存储和分析成本,以及云中这些低价值时间序列数据的计算成本。

有了边缘计算,这些数据就可以被捕获,如果有必要的话,在将数据发送到云或其他上游聚合点之前进行分析和汇总,这比通过WAN链路发送未经过滤的数据要便宜得多,后者通常非常昂贵。

4、传统系统连接问题

公司经常连接到物联网的传统系统具有非IP/以太网接口。因此,他们需要来自模拟或专有系统接口的物理转换,以便能够使用和分析数据。这只能在生成数据的原始设备旁边完成。

这是物联网中的边缘计算可以提供帮助的地方。边缘可以充当新旧之间的中介,为没有现代计算能力的传统资产添加智能功能。

5、物联网安全问题

尽管云服务提供商已经为终端客户的物联网产品开发了出色的安全性,但运营技术专业人员仍然担心他们的敏感数据一旦离开企业的墙壁就不会安全。

为了解决这个问题,可以在边缘添加更多智能来保护系统,使其更强大,可以抵御黑客攻击和入侵。因此,任何中断都将仅限于边缘计算设备和这些设备上的本地应用程序。

边缘计算在物联网中应用的领域非常广泛,特别适合具有低时延、高带宽、高可靠、海量连接、 异构汇聚和本地安全隐私保护等特殊业务要求的应用场景。为了打造更适合行业应用的物联网通讯终端产品,四信通信充分利用边缘计算技术,大力研发生产出了F-G200边缘计算网关,该系列产品可帮助用户快速接入高速互联网,实现安全可靠的数据传输。

宏桥智慧云盒,即边缘计算物联网网关,是智慧灯杆发挥城市物联感知能力的核心组件。在智慧灯杆中装入智慧云盒,能够在智慧灯杆附近俯视范围内的地面及地下,建立小型物联网络,将各类智能硬件设备串联,采集智能终端设备的各类数据,并将数据传输到智慧物联网管理平台。智慧云盒串联智慧灯杆上挂载的智能设备,解析不同硬件协议,形成统一的信息传输通道;“云盒”集成无线通讯模组,可以打造以智慧灯杆为中心的区域物联感知;每一个智慧“云盒”都有一个唯一的设备编码,是智慧灯杆在物联网管理平台上面的设备“IP”便于打造智慧灯杆和物联感知设备的地理网格,打造全域物联感知。宏桥智慧“云盒”具备强大算力,可以打造智慧灯杆的边缘计算能力。具备边缘计算的智慧灯杆,可以理解成遍布城市各个角落的特殊的“机器人”。智慧灯杆具备智能设备的联动策略执行能力,感知设备与执行设备可以自行联动,自动执行联动策略;宏桥智慧“云盒”同时具备视频识别能力,智慧灯杆更是一台敏捷的监控机器人,解决非结构化视频数据的分析效率和资源瓶颈问题。

政策推动我国物联网高速发展

自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》。

根据咨询公司STL Partners的研究发现,边缘计算能够在许多场景大展身手,这里选择了以下9个重要的应用场景:
1、自主汽车
卡车车队的自动组队可能是自动车辆的首批使用案例之一。在这里,一群卡车在车队中彼此紧跟着行驶,节省了燃料成本,减少了拥堵。有了边缘计算,除了前面的卡车,所有卡车都将不再需要司机,因为卡车将能够以超低延迟相互通信。
2、油气行业资产的远程监控
石油和天然气的失败可能是灾难性的。因此,他们的资产需要仔细监控。
然而,石油和天然气工厂往往位于偏远地区。边缘计算使得实时分析与处理更接近资产,这意味着更少地依赖于与集中式云的高质量连接。
3、智能电网
边缘计算将成为更广泛采用智能电网的核心技术,有助于企业更好地管理其能源消耗。
连接到工厂、工厂和办公室边缘平台的传感器和物联网设备正在被用于实时监测能源使用并分析其消耗。有了实时可见性,企业和能源公司就可以达成新的交易,例如在电力需求的非高峰时段运行大功率机械。这可以增加企业对绿色能源,如风能的消耗。
4、预测性维护
制造商希望能够在故障发生之前分析和检测生产线的变化。
边缘计算有助于使数据的处理和存储更接近设备。这使物联网传感器能够以低延迟监控机器健康状况,并实时执行分析。
5、住院病人监护
医疗保健包含几个优势机会。目前,监测设备,如血糖监测仪、健康工具和其他传感器等,要么未连接,要么需要将来自设备的大量未处理数据存储在第三方云上。这给医疗保健提供者带来了安全问题。
医院网站上的边缘可以在本地处理数据,以保护数据隐私。边缘计算还可以向从业者及时通知患者的异常趋势或行为。
6、云游戏
云游戏是一种新型的游戏,它可以将游戏的实时内容直接传输到设备上,这种游戏高度依赖于延迟。
云游戏公司正在寻找尽可能接近玩家的边缘服务器,以减少延迟,提供完全响应和沉浸式游戏体验。
7、内容交付
通过在边缘缓存内容,如音乐、视频流、网页等,可以极大地改善内容传播。延迟可以显著降低。内容提供商正在寻求更广泛的分发CDN,从而根据用户流量需求保证网络的灵活性和定制性。
8、交通管理
边缘计算可以使城市交通管理更加有效。这方面的例子包括在需求波动的情况下优化公交频率,管理额外车道的开启和关闭,以及未来管理自动驾驶汽车流量。
通过边缘计算,使处理和存储距离智能家居更近,减少了回程和往返时间,并在边缘处理敏感信息。例如,亚马逊的Alexa等语音助手设备的响应时间会快得多。
有了边缘计算,就不需要将大量的流量数据传输到集中式云,从而降低了带宽和延迟的成本。
9、智能家居
智能家庭依赖于物联网设备从房子周围收集和处理数据。通常,这些数据被发送到一个中央远程服务器,在那里进行处理和存储。然而,这种现有体系结构存在回程成本、延迟和安全性方面的问题。
通过边缘计算,使处理和存储距离智能家居更近,减少了往返时间,并在边缘处理敏感信息。
这些只是边缘计算跨多个行业支持的许多用例中的一小部分。以谐云边缘计算应用实例来说,通信领域,谐云为行业巨头某在线服务公司业务场景定制开发、打造了云边协同平台,助力其轻松应对流量洪峰;交通领域,联合上汽集团商用车技术中心打造了“基于容器的下一代车云协同架构”,是汽车行业的首款“云、边、端”一体化架构,可实现百万级车联网大规模接入;为某跨海大桥打造了一体化协同的产品,积累了丰富的“边-端”设备协议对接经验,交付了行业顶尖的“软硬一体化”的整体解决方案。
其中,某在线服务公司和上汽集团案例分别荣获《2020年分布式云与云边协同十佳实践案例》奖项和《2021年分布式云与云边协同十佳实践案例》奖项。旗下边缘计算产品通过“2021云边协同类能力评估”、“边缘一体机、可信物联网云平台(通用/安全要求)”多项能力评估,获浙江CCF2021优秀产品奖,在业内拥有极佳口碑,并获得行业权威认可。
目前,谐云边缘计算已实践于分布式云、物联网、车云协同、边缘智能金融等多场景,为边缘计算领域树立了实践标杆和经典案例。并在一些典型行业如通信、交通、金融、军工等多个行业领域中得到大规模的落地验证。

下面是一些最新的物联网技术:

5G网络:5G网络是一种高速、低延迟的无线通信技术,将大大提高物联网设备之间的数据传输速度和稳定性。

区块链技术:区块链技术可以用于构建安全的物联网网络,确保数据的安全性和完整性,防止数据被篡改或泄露。

人工智能(AI):人工智能技术可以用于对物联网设备的数据进行分析和处理,从而提高智能设备的智能化水平和效率。

边缘计算(Edge Computing):边缘计算技术可以将数据处理和分析的任务从云端转移到物联网设备的本地,从而提高物联网设备的响应速度和效率。

智能传感器:智能传感器可以实时监测环境和设备的状态,从而为物联网系统提供更加准确和实时的数据。

虚拟现实(VR)和增强现实(AR)技术:虚拟现实和增强现实技术可以将物联网设备的数据可视化,为用户提供更加直观的体验和 *** 作界面。

自主控制系统:自主控制系统可以使物联网设备在不需要人类干预的情况下自主执行任务,提高智能设备的自主性和效率。

2019年2月26日,业界领先的容器管理软件提供商Rancher Labs(以下简称Rancher)宣布推出轻量级Kubernetes发行版K3s,这款产品专为在资源有限的环境中运行Kubernetes的研发和运维人员设计。

k3s是一个完全符合标准的生产级Kubernetes发行版,同时也是史上最轻量的k8s发行版,它满足了在 边缘计算 环境中运行在x86、ARM64和ARMv7处理器上的小型、易于管理的Kubernetes集群日益增长的需求。它相对于以前的版本而言,主要具有以下的变化:

k3s对Edge、Iot、CI、ARM设备的支持十分友好。k3s可以从分发挥这些设备的性能。

ARM64和ARMv7都支持二进制文件和多树图像。k3s可以在像Raspberry Pi一样小的东西或者像AWS a14xlarge 32GiB一样大的服务器良好工作。

k3s被包装在一个简单的包中,为了简化安装的步骤,k3s将安装所需要的资源都打包在单个二进制文件中。这使得环境的安装与升级格外简单。

k3s自动生成TLS证书可以确保在默认情况下的通信都是安全的。

k3s是专门为边缘计算环境设计的,所以在无人值守、资源受限、远程位置或者物联网设备在工作负载的情况下,k3s将成为你的不二选择。

k3s的工作原理图:

安装使用k3s服务的最低系统要求:

在了解了k3s的主要功能和其优势后,下一步就是安装和使用k3s了。

简单安装使用k3s服务的方式:

更多详细的安装步骤请查阅官方文档: >

边缘计算是指在靠近物或数据源头的网络边缘侧,融合了网络、计算、存储以及应用处理能力的分布式平台,就近提供智能服务。和云计算的区别是:作用的不同。

边缘计算是云计算的一个逆 *** 作,云计算强调的是计算和存储等能力从边缘端或桌面端集中过来,而边缘计算则是将这种计算和存储等能力重新下沉到边缘。

边缘计算和云计算两者实际上都是处理大数据的计算运行的一种方式。边缘计算是对云计算的一种补充和优化,云计算把握整体,而边缘计算更专注局部。

云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。

云计算的核心概念就是以互联网为中心,在网站上提供快速且安全的云计算服务与数据存储,让每一个使用互联网的人都可以使用网络上的庞大计算资源与数据中心。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13306663.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-11
下一篇 2023-07-11

发表评论

登录后才能评论

评论列表(0条)

保存