物联网技术主要应用有哪些方面

物联网技术主要应用有哪些方面,第1张

物联网主要技术。在物联网应用中有三项关键技术为物联网开辟出极为广阔的应用前景:

1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。

2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景,这也是为什么“物流”这个词总是与“物联网”同时出现。

3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。

物联网应用领域。物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。

1物联网本质上是互联网大脑的感觉神经系统和运动神经系统,传感器和通过AI控制的智能设备通过互联网线路连接到互联网中枢神经系统供云端的群体智慧和云AI使用。
2云计算本质上是互联网大脑的中枢神经系统,它通过服务器,网络 *** 作系统,神经元网络(大社交网络),大数据和基于大数据的人工智能算法对互联网大脑的其他组成部分进行控制。
3大数据本质上是互联网大脑各神经系统在运转过程中传输和积累的有价值信息。因为在过去50年随着互联网的快速进化而急速膨胀,体量极其巨大。是互联网大脑产生智慧智能的基础。
4人工智能本质是互联网大脑产生产生智慧智能的动力源泉,人工智能不仅仅通过算法如深度学习,机器学习与大数据结合,也运用到互联网大脑的神经末梢,神经网络和智能终端中。使得互联网大脑各个神经系统同时提升能力。
5工业40和工业互联网本质是互联网大脑的运动神经系统,这将是互联网大脑未来非常庞大的组成部分,它也将包含6中介绍的各种前沿技术。

制造是什么

我们先看看制造究竟是一个什么过程。生产制造过程就是把一组原材料转换为产品,比如投入钢板及相关零部件通过生产过程产出一辆汽车。那么生产过程要涉及什么东西呢,我们看看制造业的组织架构

制造业组织结构

如上图,我们先关注中间一部分,也就是生产部分,制造业的核心环节。

计划控制:可以理解为生产的大脑中枢,它决定了生产什么,何时生产,生产多少。同时也调度生产资源(人,设备,物料,技术,能源)合理分配实现资源利用最大化。

采购:根据生产计划,确定何时需要采购什么原材料

制造:包括加工、组装、工装工具等管理

质量保证:对外购零部件、材料以及生产过程中的产品进行质量检验和质量管理等

设计:产品的设计和研发

所以,制造过程是需要以上所有相关部门的密切配合、协调工作的。制造过程是一个多部门参与、协调的过程。任何一个小的环节出现问题,生产都会被迫中断。

智能制造干什么

当前阶段

上面我们说了,制造过程涉及到多个部门的协作,那么当然,智能制造中的智能也要覆盖到所有这些相关部门。

智能实际上更需要靠软件来实现,目前我们离真正的智能还很远。目前我们大多还是在做信息化,信息化,数字化是智能的基础。看看各个环节都需要什么信息化系统吧。

设计:CAD/CAE,PLM 等

计划控制:ERP,APS 等

采购:ERP

制造:MOM/MES,精益生产,智能设备,工业物联网

质量:MOM/QMS

所以,目前普遍意义上说的做智能制造相关工作,基本是在做上面这些信息化系统。当然也有一些做工业大数据分析的,当然工业大数据的数据来源就是上面我们所说的各种信息化系统

真正的智能制造

看过安筱鹏博士的书,里面提到智能制造的本质是以数据的自动流动化解复杂系统的不确定性,优化制造资源的配置效率。

这句话的意思可以用我们自身来类比一下,我们的大脑很智能吧,他可以感知外界环境的变化来控制我们的身体来做出对应的反应。对应三步,感知、分析、决策

智能制造中的智能就是要打造出一个制造系统的大脑中枢,这个大脑可以感知到整个生产环节的各种因素的变化,并且经过分析计算做出最优的决策。

第一步就是感知,首先要掌握外界的信息。在生产系统中可以理解为通过数据采集来实时掌握生产环节的各个状态,比如原材料库存情况,设备运行情况,人员情况等。目前我们的工业物联网,各个环节的信息化系统都可以理解为数据采集。工业物联网采集的是设备的运行数据,各个业务系统采集的是业务数据。

第二步是数据的流动和数据分析。首先实现各个系统数据的互联互通。比如采购就影响着原材料库存,库存又影响着生产,所以我们要让不同系统中的数据建立联系。之后通过大数据分析或者各种人工智能算法得出某个环节的最优解。

第三步就是决策,通过分析,智能系统可以控制生产环节做出调整。最简单的就是调度,比如发现某一产品原材料库存不足会自动切换另一种产品。发现一台设备有空闲,利用率不够,可以自主分配任务给此设备,提高资源利用率。

此时,整个生产环节,从采购到生产到质量控制到交付。全部由智能系统来调度,仿佛是有一个大脑在控制着各个环节做出相应的动作。

所以,你看。我们目前大部分只是在做第一步,极少一部分在做第二步的工作。至于最终目标的实现还有很远的距离。

这一部分也回答了开头的第二个,第三个问题。正是因为生产环节涉及到机械设备、自动控制、软件分析、生产流程等,所以智能制造就必须是一个交叉学科。

专业及就业

来回答你的第四个问题,大学本科里面的培养方案都是一些基础学科的教育,是让我们对此有基本的理论知识和概念。和实际工作中用到的还是有很大差距的。可以理解为,专业是一个很宽的概念,交给你很多方向的基本概念,但是工作就是从中选择一个方向并深入下去。

所以,即使你要做本专业的工作,也只会是做智能制造体系中的某一个环节。也许是各个信息化系统的实施,也许是工业物联网,也许是数据分析,智能算法等。

你的培养方案中关于软件方面并不算多,我建议你选择一到两门编程语言及一种关系型数据库,达到熟练掌握的地步。

至于深造的话,更多的就偏向于理论研究了,我朋友圈中也有几个硕士,博士在做智能制造方向的理论和算法研究。这个看个人选择了。

至于你题目中提到的和计科,智科对比,我认为没必要,既然选择了这个专业就好好的学习这个专业,目前全世界的制造业都在寻求转型,实现生产力的进一步提高,另外政策层面也是非常给力的。不要过多纠结于选择上。

思想价值决定企业命运的时代已经到来。

在日益全球化和移动互联、人工智能技术日趋普及的趋势下,优势企业之间的最高阶段的竞争,不能局限于硬技术的竞争,而是体现在企业软实力的竞争,亦即思想的竞争。面对今天的市场格局及为未来趋势,你的企业应该有什么样的价值判断,应该有什么样的思想基础,应该发出什么样的声音,这才是关键。

巴黎高科路桥大学秉承法国精英式高等教育体系,针对工业发展需求,将技术、人文与管理相结合,教学内容具有更新快,目的性强的特点,在学术科研上以项目为主线,拥有强大的企业合作背景和资源。学校注重全球发展和国际合作,在四大洲共有67个合作伙伴院校。

ENPC DBA(IM)项目关注学员成长,更关注学员背后企业和行业发展,旨在为学员提供前沿的学术思想,科学的理论支持,同时结合中国当前制造业发展,为学员提供理论与实践之间科学转换的视角、方法和工具。

更多招生简章、项目信息,欢迎私信了解详情~~~~~~


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13312280.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-12
下一篇 2023-07-12

发表评论

登录后才能评论

评论列表(0条)

保存