物联网已经成为国家战略新兴产业,并写入“十三五”规划当中。而“中国制造2025”更是中国政府实施制造强国战略的第一个十年行动纲领。在中国政府政策与资金的支持下,推动智能制造发展、提升网络化协同制造水平、加快制造业向服务转型将成为制造业发展的主要方向,将会在未来3至5年推动制造业物联网支出保持较高增长。
中国物联网在制造业的发展虽然仍处于初期阶段,但是其应用的深度与广度在不断加强,新的应用场景不断涌现。随着新兴技术(如云计算、大数据和移动技术)与物联网的融合以及IT(信息技术)与OT(运营技术)集成,物联网技术的潜能将加速释放。IDC预计,未来两年,中国制造业物联网发展将呈现以下三大趋势。
——物联网平台竞争将日趋激烈。随着越来越多的企业部署物联网应用,IDC认为,制造业物联网平台将是代表智能制造变革与重塑的主要方向之一。未来的平台,既可以来自硬件领域,也可以来自软件领域。在硬件管理领域,主要是生产设备的连接管理;软件领域主要包含企业应用管理平台、企业信息显示与报告平台,以及企业数据分析与洞察平台。
——物联网应用将加速制造业创新。制造业物联网应用将引领制造业企业进入创新和变革的新时代。物联网应用的低成本感知、高效的数据收集、实时的数据记录、分布式计算和高级数据分析等优势,必将加速信息技术和制造业深度融合,创新企业的研发、生产、运营、营销和管理方式。此外,机械学习技术不断取得突破,也将促进制造业数据分析变得更加迅速和精确。
——边缘计算将成为下一个热点。随着物联网终端的大量部署,物联网产生数据将呈现几何式的增长,因此通过分散的终端设备和物联网网关进行数据过滤和处理,将是制造业物联网应用的重要发展方向。同时,数据将逐渐成为企业的重要资产,边缘的智能化,将在网络或者数据中心出现异常时,保证数据的安全,帮助企业规避风险。
IDC制造业高级研究经理王岳表示:“中国制造企业已纷纷开始部署物联网战略,旨在提高企业生产运营效率,并加速由生产向服务转型。随着智能制造的推进,信息技术与运营技术的快速融合,以及 数字化双胞胎 概念的普及,物联网技术将在制造业获得更大的发展空间。同时,物联网与云计算、移动技术、大数据等新兴数字技术的结合,将进一步释放物联网的潜能,为打造物联网生态闭环奠定了坚实的技术基础。相信未来,随着生态的逐渐成熟,基于物联网平台的行业与细分行业应用将迎来快速增长。”
物联网在工业领域的应用不仅使数据流、硬件、软件实现智能交互,更将从本质上颠覆传统工业模式,形成新的工业业态,而“软硬结合”将是未来工业企业在这一轮技术革命新浪潮中脱颖而出的核心竞争力。全方位整合的安全工业物联网解决方案能够为工业企业提供一站式服务,不仅能够实现设备与资产的智能互联、数据管理和现场控制,还可以实现大数据分析和智能协同,大幅提升生产力。这正是得益于物联网和大数据平台的构建。霍尼韦尔过程控制部的陈延表示:“传统制造业的工艺越来越精密化,工业设施和 *** 作过程也日益复杂,物联网在工业领域的应用未来不仅要着眼帮助提高生产效率,同时也要关注过程的安全性、可靠性。此外,物联网还将给工厂管理人员和工人带来全新的工作体验,蓝领和白领之间的界限未来将日渐模糊。”
此外,物联网和大数据平台的出现让工人也日益融入互联平台。例如,在未来的互联工厂里,作业人员的便携式设备可以实时地与指挥中心进行信息和数据交互,实时快捷地参与整个厂区的监测和 *** 控。万物互联时代,物联网对传统工业形成新的挑战,也带来新的机遇。对中国制造企业来说,软硬件相结合、效率和安全并重将成为未来工业企业的核心竞争力。
以上由物联传媒转载,如有侵权联系删除物联网通过大量的网络传感器来接受数据
当前收集的信息数据类型不同,物联网的数据特征与大数据不同,主要特征有:
heterogeneity, variety, unstructured feature, noise, and high redundancy
物联网数据特征:异构型、多样性、无结构化特征、噪声、高冗余。
大数据的4V特征:大量化、多样化、快速化、价值化
当今物联网数据不是的大数据最重要的组成部分,但是据惠普的预测,到2030年,传感器数量将达到1万亿,成为大数据的重要组成部分。物联网信息聚合技术是指在传输数据的同时对数据进行处理,即数据传输与融合并行。数据在由采集终端到用户终端的传输过程中,完成复杂的信息处理流程,具体的信息处理方法根据不同的网络应用需求进行设计和实现。网内协作模式的信息聚合以网内结点的协作互助为基本方式,解决物联网的数据传输问题,通过协作模式补偿传感器结点能力和能量受限的问题。目前,对于信息聚合技术的研究从技术手段上来看可分为空间策略的信息聚合和时间策略的信息聚合两个阵营。物联网中边传输边处理的总体信息聚合策略决定了网络层路由"以数据为中心"的特点如何选择适合信息处理的最佳传输路径,数据流相遇时是否应该进行融合处理,在不同的拓扑结构中如何选择最优聚合点,是数据聚集的空间策略所要解决的主要问题。显而易见,数据聚集的空间策略与网络的拓扑结构和数据传输路径具有非常紧密的联系。物联网的技术体系框架包括感知层技术、网络层技术、应用层技术和公共技术:
1 感知层:数据采集与感知主要用于采集物理世界中发生的物理事件和数据,包括各类物理量、标识、音频、视频数据。物联网的数据采集涉及传感器、RFID、多媒体信息采集、二维码和实时定位等技术。传感器网络组网和协同信息处理技术实现传感器、RFID等数据采集技术所获取数据的短距离传输、自组织组网以及多个传感器对数据的协同信息处理过程。
2 网络层:实现更加广泛的互联功能,能够把感知到的信息无障碍、高可靠性、高安全性地进行传送,需要传感器网络与移动通信技术、互联网技术相融合。经过十余年的快速发展,移动通信、互联网等技术已比较成熟,基本能够满足物联网数据传输的需要。
3应用层:应用层主要包含应用支撑平台子层和应用服务子层。其中应用支撑平台子层用于支撑跨行业、跨应用、跨系统之间的信息协同、共享、互通的功能。应用服务子层包括智能交通、智能医疗、智能家居、智能物流、智能电力等行业应用。
4 公共技术:公共技术不属于物联网技术的某个特定层面,而是与物联网技术架构的三层都有关系,它包括标识与解析、安全技术、网络管理和服务质量(QoS)管理。有相同点,也有不同点。
相同点:功能测试、边界分析测试、性能测试,其它部分由于各自特性或关注点不同需要进行特殊的测试。
不同点:数据产生来源。
传统软件或者普通互联网软件的数据都是由人输入的,服务端都要对接收到的数据进行预处理,凡是数据不符合要求时都会返回让用户重新输入数据。比如用户使用银行APP在线转账为例,如果用户输错了不存在的收款账户或者在转账金额中输入了字母(一般客户端都会对金额输入做控制防止金额栏输入字母这种事发生)那么服务端就会捕捉到这个入参错误并且发回客户端要求重新输入,甚至为了提高开发效率好多开发框架已经把入参合规性检测整合到开发框架中了。
但是物联网的数据基本上都不是靠人工输入产生的,而且好多物联网应用设备长期在高温高湿的环境下使用,只能使用比较低端的 *** 作系统和编程语言,更容易因终端程序错误及网络问题产生数据错乱问题什么是工业物联网平台?工业物联网平台就是一种工业物联网软件,它允许组织安全地管理工业物联网生态系统中所有互联的人员、系统和物体。那,工业物联网平台具有哪些特点呢?

一、什么是工业物联网平台
定义工业物联网平台时,要认识到,物联网创建了一种新的集成水平,随着成千上万的工业物联网设备连接到网络上,企业需要管理的端点数量比以往任何时候都要多得多。但是,这不是简简单单的设备问题,工业物联网网络实际上是一个由人、系统和物体组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理这个生态系统中的每个元素。
最好的工业物联网平台可以将设备与企业应用软件完美整合,使得数据能够在互联的人、系统和物体之间无缝而安全的流动。
工业物联网平台应具备以下功能:
▲设备整合功能
这涵盖了工业物联网上传感器、执行器、标签和信标等所有设备的配置、管理和淘汰。工业物联网平台应该能够自动摄取物联网数据,并使其可用于网络上的其它元素。
▲数据整合功能
工业物联网的价值就在于数据,必须能够对其进行捕获、集成和管理。工业物联网平台将新的物联网主数据与现有的应用软件数据以及来自社交媒体等其他来源的数据关联起来,以探求其相关性。
▲流程整合功能
作为数字生态系统的一部分,工业物联网元素并非孤立于业务运作之外。工业物联网解决方案必须嵌入到企业业务流程和工作流程中。为此,工业物联网平台将物联网业务逻辑整合到其他后端系统中,并将物联网数据部署到工作流程管理中,从而实现物联网解决方案、业务流程和工作流程的整合。
▲生态系统服务
工业物联网平台负责安全地建立、启动和管理数字生态系统中人、设备、数据和设备的可信交互。
二、工业物联网平台有哪些类型
虽然工业物联网平台研发的初衷是为了管理和控制工业物联网设备与数据,但已经发展出了许多不同类型的平台以适应不同的用例。实际上,很难对工业物联网平台进行归类,反而工业物联网平台供应商正在改进其平台产品以满足客户要求和特定业务需求。
工业物联网平台将提供不同的功能组合,包括工业物联网端点管理与连接性,物联网数据的捕获、摄取与处理,数据的可视化与分析,以及将物联网数据整合到业务流程和工作流程中。
在比较不同类型的平台时,都应基于组织的业务需求和特定的IT基础架构,并将之与工业物联网的解决方案相匹配。
三、工业物联网平台具有哪些特点
因此,最佳的工业物联网平台因组织而异,并且单一的平台功能集无法为每个用例提供足够的解决方案。但无论如何,任何工业物联网平台都应具备以下特性:
▲安全
安全是工业物联网平台的核心,既要保护所有的物联网端点免受外部网络攻击,又要应对源自组织内部的潜在恶意活动。
▲连接性
必须快速安全地配置每个工业物联网设备,并管理其生命周期的所有阶段,包括在按需配置、注册、激活、挂起、未挂起、删除和重置设备时对其进行跟踪与授权。
▲集成
集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备无缝而安全地与不同的企业应用软件、云服务、移动APP和传统系统连接并共享信息。
▲识别
工业物联网平台能够为最广泛的物联网设备提供支持。无论在工业物联网架构中的任何地方,都能够自动感知物联网设备的存在,以建立安全连接,并可以快速地建立设备凭证,或在需要时将其自动分配。
▲分析
物联网设备极大地增加了组织内的数据量。工业物联网分析应该是工业物联网平台最强大的功能之一。它能够将工业物联网数据进行适当的可视化和分析,并从中提出切实可行的见解,用于改进数据驱动型决策。
四、工业物联网平台能改变什么
工业物联网平台是物联网项目成功实施的基础。没有有效的平台,任何大规模的工业物联网部署都不能实现其全部价值。最好的工业物联网平台能够给组织带来很多效益,包括:
▲降低成本
管理和维护迥然不同的工业物联网设备和网络,成本高昂、耗时且复杂。工业物联网平台将整个管理流程集中到一起,能够大幅度地降低企业的负担和成本。(来源物联之家网)另外,随着越来越多的组织寻求工业物联网供应商来管理其网络,最好的工业物联网平台使得供应商能够提供按需付费的定价模式。
▲改善运营
工业物联网解决方案能够提供设备性能和人员的实时信息,以帮助简化和改进业务流程和工作流程。通过捕获物联网数据并将其与其他内部、外部来源的数据进行整合,工业物联网平台可促进诸如预测性维护以及基于跟踪的供应链可见性等领域的运营改进。
▲提高生产效率
平台为部署新的工业物联网应用软件(例如DigitalTwins数据孪生)打好了基础。利用这些软件来进行新产品的设计、研发与生产,将有助于推动企业创新和提高生产效率。
▲物联网数据货币化
创新型公司已经开始利用他们从物联网数据获得的洞察力来开发新的产品和服务。在产品的整个生命周期中,售后与服务比原始采购更加有利可图。工业物联网平台能够在产品生产及使用的每个阶段捕获数据并进行分析。这样就可以创建新的数据驱动型服务以及开发全新的数据驱动型产品。
▲提高物联网安全
众所周知,物联网设备缺乏企业级的安全性。工业物联网传感器等设备除了执行特定的通知任务之外,几乎没有什么计算能力,也无法提供多层安全性。工业物联网平台能够提供所有的身份管理功能,例如安全认证与授权,以确保物联网端点不会受到网络攻击。
五、关于正达信通ZedaCloud物联网云平台
ZedaCloud物联网云平台是基于云计算原理开发的物联网应用系统,是ZedaSmart云边端物联网整体解决方案的核心,是一个综合性的物联网解决方案。ZedaCloud物联网云平台基于微服务架构设计,满足分层分布式计算架构,支持私有化和公有云两种部署方式,既可单机系统部署,也可集群部署,灵活应变,满足不同的应用需求。平台可适配于各种物联网应用系统,支持包括mqtt、modbus、NB-IoT、LoRa等在内的多种通信协议,实时监测接入设备和传感器的数据及运行状态。并且,还能与市面上绝大多数物联网硬件无缝对接,完成物联设备的数据接入、控制、存储、分析、展示等,实现对硬件设备的远程管理,做到精确感知、精准 *** 作、精细管理、智能分析,可应用于工业领域的设备管理、能源管理、安全环保,应用于结构体安全监测、地质灾害监测,应用于建筑领域的机房动环监控、楼宇综合监控等应用场景。
远程计算能力
随着5G和互联网速度的飞速发展,云创新正在成为主流,允许企业通过鼠标快速访问远程计算服务。通过减少对保持内部基础设施的要求,云使公司能够超越传统的物联网应用,并为在以前未开发的领域大规模部署物联网开辟了入口。
可扩展性和灵活性
物联网流量和设备数量预计将在未来几年内激增,这将促使生成的大量数据与设备之间扩大互动。这意味着您的企业将需要一种具有成本效益的方法来存储,处理和访问IoT解决方案中的数据,并扩展资源以应对必不可少的需求。
轻松的数据集成
数据集成是连接物联网设备和在物联网环境中建立通信的重要步骤。云计算可以帮助克服物联网的数据集成挑战,例如不同来源的集成和网络集成。云计算可以帮助物联网小工具在不同API的帮助下整合众多来源,从而实现来自不同来源的简单数据集成。
安全和隐私
物联网设备如雨后春笋般涌现,可能让公司实现了运营自动化,但同样也带来了严重的安全隐患。云及其广泛的控制可以是一个合理的解决方案。云解决方案有助于实现万无一失的安全措施。它允许企业采用强大的加密和身份验证协议。有了一流的云解决方案,就可以监督并确保访问物联网设备的用户的身份。
关于云计算在物联网中有哪些重要作用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)