必须是高效的分布式系统。物联网产生的数据量巨大,仅中国而言,就有5亿多台智能电表,每台电表每隔15分钟采集一次数据,一天全国智能电表就会产生500多亿条记录。这么大的数据量,任何一台服务器都无能力处理,因此处理系统必须是分布式的,水平扩展的。为降低成本,一个节点的处理性能必须是高效的,需要支持数据的快速写入和快速查询。
2实时处理
必须是实时处理的系统。互联网大数据处理,大家所熟悉的场景是用户画像、推荐系统、舆情分析等等,这些场景并不需要什么实时性,批处理即可。但是对于物联网场景,需要基于采集的数据做实时预警、决策,延时要控制在秒级以内。如果计算没有实时性,物联网的商业价值就大打折扣。
3高可靠性
需要运营商级别的高可靠服务。物联网系统对接的往往是生产、经营系统,如果数据处理系统宕机,直接导致停产,产生经济有损失、导致对终端消费者的服务无法正常提供。比如智能电表,如果系统出问题,直接导致的是千家万户无法正常用电。因此物联网大数据系统必须是高可靠的,必须支持数据实时备份,必须支持异地容灾,必须支持软件、硬件在线升级,必须支持在线IDC机房迁移,否则服务一定有被中断的可能。
4高效缓存
需要高效的缓存功能。绝大部分场景,都需要能快速获取设备当前状态或其他信息,用以报警、大屏展示或其他。系统需要提供一高效机制,让用户可以获取全部、或符合过滤条件的部分设备的最新状态。
5实时流式计算
需要实时流式计算。各种实时预警或预测已经不是简单的基于某一个阈值进行,而是需要通过将一个或多个设备产生的数据流进行实时聚合计算,不只是基于一个时间点、而是基于一个时间窗口进行计算。不仅如此,计算的需求也相当复杂,因场景而异,应容许用户自定义函数进行计算。
6数据订阅
需要支持数据订阅。与通用大数据平台比较一致,同一组数据往往有很多应用都需要,因此系统应该提供订阅功能,只要有新的数据更新,就应该实时提醒应用。而且这个订阅也应该是个性化的,容许应用设置过滤条件,比如只订阅某个物理量五分钟的平均值。
7和历史数据处理合二为一
实时数据和历史数据的处理要合二为一。实时数据在缓存里,历史数据在持久化存储介质里,而且可能依据时长,保留在不同存储介质里。系统应该隐藏背后的存储,给用户和应用呈现的是同一个接口和界面。无论是访问新采集的数据还是十年前的老数据,除输入的时间参数不同之外,其余应该是一样的。
8数据持续稳定写入
需要保证数据能持续稳定写入。对于物联网系统,数据流量往往是平稳的,因此数据写入所需要的资源往往是可以估算的。但是变化的是查询、分析,特别是即席查询,有可能耗费很大的系统资源,不可控。因此系统必须保证分配足够的资源以确保数据能够写入系统而不被丢失。准确的说,系统必须是一个写优先系统。
9数据多维度分析
需要对数据支持灵活的多维度分析。对于联网设备产生的数据,需要进行各种维度的统计分析,比如从设备所处的地域进行分析,从设备的型号、供应商进行分析,从设备所使用的人员进行分析等等。而且这些维度的分析是无法事先想好的,而是在实际运营过程中,根据业务发展的需求定下来的。因此物联网大数据系统需要一个灵活的机制增加某个维度的分析。
10支持数据计算
需要支持数据降频、插值、特殊函数计算等 *** 作。原始数据的采集可能频次挺高,但具体分析时,往往不需要对原始收据进行,而是数据降频之后。系统需要提供高效的数据降频 *** 作。设备是很难同步的,不同设备采集数据的时间点是很难对齐的,因此分析一个特定时间点的值,往往需要插值才能解决,系统需要提供线性插值、设置固定值等多种插值策略才行。工业互联网里,除通用的统计 *** 作之外,往往还需要支持一些特殊函数,比如时间加权平均。
11即席分析和查询
需要支持即席分析和查询。为提高大数据分析师的工作效率,系统应该提供一命令行工具或容许用户通过其他工具,执行SQL查询,而不是非要通过编程接口。查询分析的结果可以很方便的导出,再制作成各种图标。
12灵活数据管理策略
需要提供灵活的数据管理策略。一个大的系统,采集的数据种类繁多,而且除采集的原始数据外,还有大量的衍生数据。这些数据各自有不同的特点,有的采集频次高,有的要求保留时间长,有的需要多个副本以保证更高的安全性,有的需要能快速访问。因此物联网大数据平台必须提供多种策略,让用户可以根据特点进行选择和配置,而且各种策略并存。
13开放的系统
必须是开放的。系统需要支持业界流行的标准SQL,提供各种语言开发接口,包括C/C++,Java,Go,Python,RESTful等等,也需要支持Spark,R,Matlab等等,方便集成各种机器学习、人工智能算法或其他应用,让大数据处理平台能够不断扩展,而不是成为一个孤岛。
14支持异构环境
系统必须支持异构环境。大数据平台的搭建是一个长期的工作,每个批次采购的服务器和存储设备都会不一样,系统必须支持各种档次、各种不同配置的服务器和存储设备并存。
15支持边云协同
需要支持边云协同。要有一套灵活的机制将边缘计算节点的数据上传到云端,根据具体需要,可以将原始数据,或加工计算后的数据,或仅仅符合过滤条件的数据同步到云端,而且随时可以取消,更改策略。如今,超过250亿台“物体”连接到互联网上,预计到2025年,这个数字将翻一番。工业物联网(IIoT)以一种爆炸式的方式迅速发展。工业物联网(IIoT)设备、标准和通信协议的激增,使得对IIoT的有效管理变得非常具有挑战性。
如何定义工业物联网 (IIoT) 平台?
工业物联网平台 是一种工业物联网软件,它使组织能够安全地管理工业物联网生态系统中所有连接的人、系统和对象。
在界定工业物联网平台时,我们应该认识到,物联网已经创造了一个新的整合水平。随着成千上万的工业物联网设备接入网络,企业需要管理比以往更多的端点。然而,这不是一个简单的设备问题,工业物联网实际上是一个由人、系统和对象组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理生态系统的每一个元素。
工业物联网平台有哪些不同类型?
虽然工业物联网平台研发的初衷是对工业物联网的设备和数据进行管理和控制,但为了适应不同的用例,已经开发了许多不同类型的平台。事实上,工业物联网平台很难分类,反而工业物联网平台供应商正在改进其平台产品,以满足客户需求和特定的业务需求。
工业物联网平台将提供不同的功能组合,包括工业物联网的端点管理和连接、物联网数据的采集、接收和处理、数据的可视化和分析,以及将物联网数据集成到业务流程和工作流中。在比较不同类型的平台时,应根据组织的业务需求和特定的IT基础设施,并将其与工业物联网的解决方案相匹配。
工业物联网平台应该具备哪些特点?
因此,最好的工业物联网平台因组织而异,单个平台功能集无法为每个用例提供足够的解决方案。但是,任何一个工业物联网平台都应该具备以下特点:
安全
安全性是工业物联网平台的核心,它不仅可以保护所有物联网端点免受外部网络攻击,还可以处理来自组织内部的潜在恶意活动。
连接性
每一个工业物联网设备都必须快速、安全地进行配置,并对其生命周期的所有阶段进行管理,包括在设备配置、注册、激活、挂起、未挂起、删除和按需重置时对其进行跟踪和授权。
集成
集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备与不同的企业应用、云服务、移动应用和传统系统无缝、安全地连接和共享信息。
识别
工业物联网平台可以支持最广泛的物联网设备。无论在工业物联网架构中的任何地方,都能自动感知物联网设备的存在,建立安全连接,并能快速建立设备凭据,或在需要时自动分配。
分析
物联网设备大大增加了组织中的数据量。分析工业物联网应该是工业物联网平台最强大的功能之一。它可以对工业物联网数据进行适当的可视化和分析,为改进数据驱动的决策提供实际的见解。
管理多个工业物联网传感器很简单,但如今,企业拥有数十万台工业物联网设备来执行遍及组织内部的众多任务。工业物联网设备有多种形状和尺寸,没有通用的工业物联网标准或连接方式。管理一个工业物联网网络意味着能够监控一系列异构的工业物联网设备。
如今,工业物联网(IIoT)平台为工业物联网在几乎所有行业的快速发展提供了解决方案。工业物联网平台能够将设备和企业应用软件完美融合,使数据在互联的人、系统和对象之间无缝、安全地流动。
1 物联网(Internet of Things,IoT)
指将传感器、执行器、智能设备、人工智能和云计算等技术融合在一起,通过互联网连接、交互和协同工作来实现智能化和自动化的网络。
2 传感器(Sensor)
指一种可以感知并测量实际物理量的设备或系统,通过将物理信号转换成数字或模拟信号来输出相应的测量结果。
3 执行器(Actuator)
指一种可以根据输入信号转换成机械或电动力的设备或系统,用于控制或驱动实际物理行为。
4 物联网平台(IoT Platform)
指一种用于将各种传感器、执行器和智能设备互联互通的技术平台,提供数据采集、数据分析、数据处理和数据交互等功能。
5 云计算(Cloud Computing)
指一种基于互联网的分布式计算和存储模式,将计算和数据存储分布在多个服务器上,提供虚拟化和动态扩展等功能。
6 数据采集(Data Collection)
指通过传感器和其他设备收集和记录现实世界中的数据,如温度、湿度、压力、位置、声音等。
7 数据处理(Data Processing)
指将采集到的数据进行分类、筛选、转换、分析等处理,以提取有用的信息,比如预警、异常检测、预测分析等。
8 数据交互(Data Interaction)
指通过互联网将数据传输到物联网平台等服务器上,并将处理结果返回到智能设备中,以实现设备之间的互通和协同工作。
9 人工智能(Artificial Intelligence,AI)
指模拟人类智能和行为的计算机系统和算法,用于实现自动化、智能化和自主学习等功能,如图像识别、语音识别、机器人等。
10 区块链(Blockchain)
指一种去中心化的分布式账本技术,用于实现安全性、透明度和信任度的高效交互和协同,如支付、合同管理、安全通信等。
物联网的缺点是:
1、安全性:物联网系统互联互通,通过网络进行通信。 尽管采取了任何安全措施,系统几乎不提供任何控制,并且可以引发各种网络攻击。
2、隐私:即使没有积极参与用户,物联网系统也能提供最详细的大量个人数据。
3、复杂性:设计,开发,维护和支持大型技术到物联网系统是相当复杂的。
扩展资料
物联网的优点:
1、高效的资源利用:如果了解每个设备的功能和工作方式,会提高资源的有效利用率并监控自然资源。
2、最大限度地减少人力:当物联网设备相互交互并相互通信并完成大量任务时,它们可以最大限度地减少人力。
3、节省时间:因为它减少了人力,所以它绝对节省了时间。 时间是通过物联网平台可以节省的主要因素。
4、增强数据收集:联网并收集相关数据。
5、提高安全性:系统能够将所有这些内容相互连接,那么就可以使系统更安全,更高效。
选择物联网平台是一项关键决策,会对企业产生多方面影响。这篇文章列出了帮您选择合适物联网平台的几个要点。可扩展性
数据增长越多,处理起来就越困难,这需要立即处理。当公司能够处理大量数据时,机器学习算法可以帮助获得更好的商业智能,这反过来又可以帮助做出更好的决策。因此,可扩展性变得很重要。为了将机器学习算法应用于大量数据,您需要首先找到一个物联网供应商来帮助获取这些数据。因此,选择物联网供应商的决定变得至关重要。随着大量数据的出现,与硬件和数据安全相关的成本和风险也随之增加。如果您从一开始就没有连接数百万台设备,这并不重要,重要的是要确保您的物联网平台能够处理数据负载。
在寻找供应商时,您需要考虑平台的可扩展性和平台的最佳性能。可扩展的物联网平台允许您连接到数百万台设备,这些设备具有不同的技术要求,并在不危及质量和效率情况下使用数据提供洞察力。
协议支持
长期以来,M2M通信和工业自动化已经存在。借助数据驱动的运营洞察,物联网使工业自动化成为一个更好、更精确的领域。为了提供完整的自动化体验,物联网平台需要支持传统和新兴协议。此外,物联网平台还应该提供协议转换。基于SCADA的RTU和PLC仍有在现有平台上实现自动化的趋势。BACnet、Modbus和CANBUS的使用在通信设备中也很常见。
定价模式
平台提供商应该有透明的定价政策。当心那些提供特惠价格的供应商,当您注册时,他们会提高价格。
如果您选择订阅模式,则可以支付订阅定价的费用。如果您要销售硬件,那么您可以选择带有许可证的平台选项,以便将其包含在开发成本中。
云基础设施
寻找能够提供适合您当前IT环境的物联网平台供应商,并托管在本地。与单一方法相比,混合云方法已经证明是成功的。混合云的最佳之处在于它能提供良好的访问性,使用此选项的公司可以方便快捷地访问私有云和公共云。
结论
随着技术的进步,物联网将改进我们彼此的互动方式,以及全球经济的运行模式。要取得成功,需要一个可扩展的集成平台。物联网机器学习也有利于根据我们的需求塑造我们的环境。
在选择物联网平台时,需要向供应商提出您的需求和限制条件,这一重要步骤将有助于做出更有针对性的决策。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)