2019年全球ICT产业关键字,聚焦「智慧、速度与创新」。创新技术如人工智慧、延展实境(XR)、区块链、数位分身(DigitalTwin)持续出笼,尤其人工智慧加速晶片及量子电脑的发展,伴随5G商转,势必带动产业跳跃式前进。既然聚焦「虚实整合、运算科技、人机互动」三大主轴,2019年COMPUTEX,全球IP矽智财授权领导厂Arm受邀出席《COMPUTEX论坛》、《InnoVEX论坛》主题演讲。Arm在COMPUTEX揭示全面运算(TotalCompute)主张,为5G时代提供更符合更多使用情境(usecase)的整体运算方案,并展现强大生态系能量。
Arm在COMPUTEX2019有哪些亮点展示?瘾科技带你浏览四大解决方案 亮点一:物联网平台回应Arm的目标在2035年打造达一兆台连网装置,为了让连网装置深度沟通,Arm针对IoT平台的生态系,近年接续推出「DesignStart」、「Pelion」及「Neoverse」等相关计画。今年COMPUTEX,Arm展示Pelion这项混合环境的端到端联网连接、装置和资料管理平台方案。Pelion特色在于建构3A情境,「任何装置、任何资料、任何云端」(Anvice,Anydata,Anycloud),管理任何种类的连网装置与连接,应付任何内外部不同类型的资料,连接任何公有、私有及混合云端。
换言之,Pelion平台让企业在安全环境下,管理各项物联网装置,无限制连结任何规模的资料。COMPUTEX也展示,Arm收购TreasureData后,借助巨量资料技术能力,Pelion平台对资料流程进行融合,让企业用户以高效、更安全的技术部署、连接和更新连网装置,顺利走入物联网的资料世界。
亮点二:AI机器学习联网装置与数据资料爆发成长,人工智慧的机器学习应用,逐渐从云端转移至终端。为了把机器学习技术放在边缘装置发挥所长,Arm针对机器学习的晶片应用进而打造全新处理器。延续Arm在CPU具备的可编程优势,以及GPU数据处理压缩能力和高吞吐量的设计特点,将其整合至机器学习晶片设计之中。针对机器学习热潮,Arm推出「ProjectTrillium」机器学习运算平台支持各种AI应用程序,在功能性与可扩展性方面,能实现更快机器学习效率。根据统计,目前ProjectTrillium平台的学习数据吞吐量,比起过去CPU、GPU协同作业的机器学习效率,已经达2~4倍以上,效能也优于传统DSP的可编程逻辑。
换言之,ProjectTrillium是一个异质的ML运算平台,平台架构包括ArmML处理器、开放原始码ArmNN软体框架,目前搭载于超过25亿台Android装置。Arm针对ML处理器进行强化,包括超过两倍能源效率,达到每瓦5兆次运算(TOPs/W)、记忆体压缩技术提升达三倍,以及提升至高达八核心的次世代峰值效能,与每秒最高32兆次运算(TOP/s)。
随着机器学习需求愈来愈高,开发人员更渴望利用系统上专属神经处理器(NPU)的优势。Arm机器学习ML处理器提供同级最优化的能耗效率,并有强大的软体生态系统支援,让整个生态系统的AI效能极大化。
▲Arm示范如何在装置上快速的执行机器学习功能,挑战人的记忆,和装置相比,看谁能先辨出不同的图像。
亮点三:AR/VR装置前几年开始流行的AR、VR装置,过去最大挑战来自虚拟视觉的稳定度。对此,Arm因应5G科技演进推出多款全新高阶IP套件,其中Mali-D77DPU显示器即是聚焦扩增实境、虚拟实境所需的内容所打造,让虚拟实境更加真实。Mali-D77是Mali-D71显示处理器更新版,最高可对应3K解析度与120fps更新率,虚拟视觉影像得以更稳定呈现。全新的硬体功能,加速头戴式显示器的虚拟实境运算,实现更小、更轻、更舒适的VR装置部署。
▲在COMPUTEX展示OculusQuest的VR头盔,提供高效能、无线,摆脱传统VR装置需要连接线的牵绊,创造VR装置新体验。
当然,使用者对AR、VR装置的期待除了影像稳定,在沉浸式体验方面,还包含更轻量、不受线材影响以及更顺畅的效能。Mali-D77其他功能表现在镜头失真校正(LensDistortionCorrection)、色差校正(ChromaticAberrationCorrection)、非同步时间扭曲(AsynchronousTimewarp),对应更清晰、更真实影像,还能降低配戴者头晕情况。除此之外,Mali-D77显示处理器IP,3K120虚拟实境效能,硬体节省VR作业负载4成以上系统频宽,以及12%功耗表现。Arm表示,为了让VR更为普及,在全球达到数十亿台装置的长期目标,Mali-D77解决现阶段显示技术的挑战,为VR产业迎向下一个新世代。
亮点四:车用Arm在今年COMPUTEX展示的第四个亮点,聚焦在汽车应用。Arm在车用方面扮演重要角色,因其牵涉稳定与安全,尤其ADAS与自动驾驶需要顾虑的层级更是重要。对此,Arm针对车载安全推出ArmSafetyReady计画,同时也包括针对自驾车的7nm制程最佳化处理器架构Cortex-A76AE,借由整合Split-Lock提供车载所需的安全性。
换言之,ArmSafetyready车用安全计画涵盖Arm既有、新型与未来的全方位车载计画,从系统性流程到研发,且通过ISO26262与IEC61508标准,一站式提供软体、元件、工具、认证及标准等资源,确保加入此计画的合作伙伴其SoC与系统,皆达到最高安全层级。
今年COMPUTEX也展示基于Arm的DMS(DriverMonitoringSystem)驾驶监控系统产品。DMS是采用ArmCortex-A7所支援的深度学习NN模型,由TEEAILab所开发。这套DMS系统展示在CortexA7上运行AI/ML以实现驱动程序状态监视功能。例如针对驾驶员闭眼、打哈欠侧视、俯视、打电话和吸烟等行为进行迅速检测,并发出音频以提醒驾驶。Arm在智慧驾驶领域,也展开AutomotiveEnhancedforFunctionalSafety计画,将推出首款多情绪执行处理器,以强化新世代安全驾驶体验。
▲COMPUTEX展会上也展示Arm在智慧驾驶领域的成果(图右),情绪执行处理器问世将有助驾驶安全。
聚焦未来世界,打造创新体验Arm在COMPUTEX2019展会中,展现新世代运算领域的创新技术与相关应用。除了上述相关亮点,也聚焦面向未来2030年的使用情境。Arm拥有全面软体开发框架,包含ArmIP、ArmNN、ArmComputeLibrary及ArmDevelopmentStudios,透过生态系统合作帮助开发人员更快采用、更快上市,透过机器学习软体优化,有效扩展硬体效能。
想像未来的世界,5G传输、机器学习、终端运算可能已经成为我们生活的日常,而产业之间将呈现万物联网的庞大生态系。对此,Arm将持续展现其领先技术优势,携手物联网超级战队掌握下一波科技浪潮。
WiFi技术:
WiFi方案的优势是技术成熟,单独的产品就可以接入公网,成本也是相对较低。
缺点则是WiFi设备一般功耗较大,在物联网领域中,供电是一个问题;
WiFi接入数量相对有限,一个家庭路由器一般只能接入几十个设备;
当然,WiFi方案在物联网初级阶段有较大优势,单独的WiFi模块依托路由器即可入网,优势明显,虽然接入数量不多,但是在物联网、智能家居未大规模普及的情况下,也可以满足大多数需求。
所以基于IoT UART串口WiFi模块WG219/WG229/WG231/LCS6260的WiFi方案更适用于对功耗要求不明显,不会大量部署的物联网产品,例如:智能电饭煲,智能空调、冰箱、洗衣机等传统家电设备接入物联网。
蓝牙技术:
蓝牙方案的主要优势在于蓝牙模块的超低功耗,而且通过app打开蓝牙与手机的交互比较简单。
SKB369/SKB501
目前随着蓝牙50模块SKB501(网页链接)、以及更多蓝牙50产品的上市,蓝牙技术的数据传输速度和覆盖范围等得到了巨大的提升,更加适用于物联网的要求。
所以,蓝牙方案适用于对功耗有要求,和手机可以直接交互的物联网产品,例如:智能门锁,智能秤,智能电动牙刷等,也适用于大规模蓝牙mesh灯控、蓝牙传感器网络的部署。
UWB技术:
超宽带技术是近年来新兴一项全新的、与传统通信技术有极大差异的通信无线新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或微秒级以下的极窄脉冲来传输数据,从而具有31~106GHz量级的带宽。目前,包括美国,日本,加拿大等在内的国家都在研究这项技术,在无线室内定位领域具有良好的前景。
UWB技术是一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。正是这些优点,使它在室内定位领域得到了较为精确的结果。
超宽带室内定位技术常采用TDOA演示测距定位算法,就是通过信号到达的时间差,通过双曲线交叉来定位的超宽带系统包括产生、发射、接收、处理极窄脉冲信号的无线电系统。而超宽带室内定位系统则包括UWB接收器、UWB参考标签和主动UWB标签。定位过程中由UWB接收器接收标签发射的UWB信号,通过过滤电磁波传输过程中夹杂的各种噪声干扰,得到含有效信息的信号,再通过中央处理单元进行测距定位计算分析。
超宽带可用于室内精确定位,例如战场士兵的位置发现、机器人运动跟踪等。超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗干扰效果好、安全性高、系统复杂度低、能提供精确定位精度等优点。因此,超宽带技术可以应用于室内静止或者移动物体以及人的定位跟踪与导航,且能提供十分精确的定位精度。根据不同公司使用的技术手段或算法不同,精度可保持在01 m~05 m。
托普云农研发的标准化、个性化物联网解决方案在吉林梨树县、杭州萧山农科所、金华寿仙谷、南充高坪农牧局、湖北金秋农业、宁夏利通区、四川岳池、赣县国家现代农业示范区、广州徐闻县等地得到广泛推广应用,为当地实现节水农业、智慧农业提供着重要的技术支撑!例如耕地质量保护大数据平台,通过搭建“1个中心,1个平台、N个应用”的平台建设模式。建一个耕地质量保护大数据中心,汇聚土、水、肥三大耕地质量数据,为耕地质量保护监测、管理、服务、应用提供数据支撑。利用大数据分析,达到精准管理,科学决策,形成指挥耕地新业态,通过大数据平台服务公共,服务管理,转变耕地保护方式。
托普水肥一体化智能灌溉系统,托普水肥一体化自动控制系统由系统云平台、墒情数据采集终端、视频监控、施肥机、过滤系统、阀门控制器、电磁阀、田间管路等组成。系统可根据监测的土壤水分、作物种类的需肥规律,设置周期性水肥计划实施轮灌。施肥机会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程的重要参数,实现对灌溉、施肥的定时、定量控制,充分提高水肥利用率,实现节水、节肥,改善土壤环境,提高作物品质的目的。该系统广泛应用于大田、旱田、温室、果园等种植灌溉作业。物联网平台主要是基于互联网、传统电信网等信息承载体的平台,软通动力物联网用软件定义世界,通过提供设备接入、设备映射、虚物管理、数据分析和应用支撑等服务,规范第三方接入和设备标准指令集,满足城市对于多样、海量、异构的物联设备应用、管理和运营需求。智慧消防物联网典型解决方案:
重点消防单位:
在原有的火灾自动报警系统的基础上,加装智慧用电安全探测器、智慧消防水源采集器(液位/水压)、智慧消防RFID标签、网络视频摄像头等前端物联探测设备,通过有线或无线互联网与智慧消防物联网数据平台互联,构建智慧城市物联网消防远程监控系统。
高层住宅:
加装智慧用电安全探测器、智慧消防水源采集器(液位/水压)、智能手报、智慧消防RFID标签等,完善重点火灾部位及消防通道网络视频摄像头等,通过有线或无线互联网与智慧消防物联网数据平台互联,构建智能消防预警系统。
小微场所:
加装智慧用电安全探测器、独立式感烟报警器、可燃气体报警器、简易自动喷淋灭火装置等,构建智能消防预警系统并实现自动灭火。托普物联网就是物联网技术在农业生产、经营、管理和服务中的具体应用。具体讲就是运用各类传感器,广泛地采集果、蔬、畜、水产、土壤、环境、物流等农业相关信息;通过建立数据传输和格式转换方法,集成无线传感器网络、电信网和互联网,实现农业信息的多尺度(个域、视域、区域、地域)传输;最后将获取的海量农业信息进行融合、处理,并通过智能化 *** 作终端实现农业产前、产中、产后的过程监控、科学管理和即时服务,实现农业的高产、高效、优质、生态和安全。
托普物联网依据自身研发优势,开发了多种模块化智能集成系统。
1、传感模块:即环境传感监测系统。它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。
2、终端模块:即终端智能控制系统。它可以完成整个园区或远程控制异地园区进行自动灌溉、自动降温、自动开启风机,自动补光及遮阳,自动卷帘,自动开窗关窗,自动液体肥料施肥、自动喷药等各类农业生产所需的自动控制。
3、视频监控模块:即实时视频监控系统。主要是通过监控中心实时得到植物生长信息,在监控中心或异地互联网上既可随时看到作物的实时生长状况。
4、预警模块:即远程植保预警系统。可以通过声光报警、短信报警、语音报警等方式进行预警。
5、溯源模块:即农产品安全溯源系统。该系统对农产品从种植准备阶段、种植和培育阶段、生长阶段、收获阶段等对作物生长环境、喷药施肥情况、病虫害状况等实施实时信息自动记录,有据可查,在储藏、运输、销售阶段采用二维码或者RFID射频技术对各个阶段数据记录,这样就能实现消费者拿到农产品时通过终端设备或网络就能查看到各类信息,才能放心食用。
6、作业模块:即中央控制室。可通过总控室对整个区域情况进行监测,包括各个区域采集点参数、控制作业状态、实时视频图像、施肥喷药状况、报警信息等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)