物联网是新一代信息技术的重要组成部分。其英文名称是“The Internet of things”。由此,顾名思义,“物联网就是物物相连的互联网”。
这有两层意思:
第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。
其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。
还有,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。
随着计算机技术、信息技术、网络技术的迅速发展(主要是云计算和现代网络技术的发展),世界各地、各行业、各单位每天都产生包括数字、文字、视频、音频等在内的海量信息,这些海量信息统称为大数据。在大数据的海洋中,利用“沙里淘金”的技术把有用数据提炼分拣出来,是大数据应用的重要内容之一。大数据应用技术大致可分为以下步骤:数据库的搜集和挖掘,数据质量的甄别和校正,信息的处理(数学模型的建立和校正),大数据的分析与成果的形成。自2013年大数据概念兴起至今,运用物联网端设施对数据库的搜集技术已经成熟,并且大数据是最先在气象中使用的,通过大型计算机的运算以及过去60年的气象数据,建立识别天气的模型,然后将这些模型与当前的气候条件进行比较,再运用预测性分析进行天气预报。
在万物互联的时代,气象大数据在大规模的收集与应用,气象数据是最用以与平衡领域产生交集和应用的大数据,例如旅游、农业、大健康等等。
以气象大数据和农业的应用为例,气象物联网大数据在农业领域的应用推动农业向“精准”和“智慧”方向发展。
1农场气象实时监测,极端气象及时预报
实时监测空气温湿度、光照、降雨量、风速、风向、大气压力、气体浓度等数据,并通过设定相关报警阈值,实现即时报警,精准控制种植环境指标。
根据卫星数据,系统可预报未来72小时气象,24小时极端天气、降水概率、大风等异常气象预警,提醒用户及时做好防灾防险准备。
2土壤墒情精准监测,异常情况快速预警
实时监测土壤水张力、土壤温湿度、水位、溶氧量、pH值等。
通过设定报警阈值,当土壤数据异常时,如湿度过高,系统自动发出预警消息提醒工作人员。
3远程掌握田间虫情,无公害诱捕杀虫
系统可实现害虫类别自动分类及计数,并自动进行无公害诱捕杀虫,减少农药的使用
通过高清摄像机采集虫情图像,可远程查看田间虫情,并制定防治措施。
4作物长势监测,突发情况可自动转向紧急录像
高清摄像头可720度旋转、拉近、拉远,查看园区实时生产情况;
发生预警时,摄像头可自动转向到预警点紧急录像,不放过任何异常;
可对视频进行截图,无需另外安装相机进行拍摄。
物联网相关技术:1信息感知技术
超高频和微波RFID:积极利用RFID行业组织,开展芯片、天线、读写器、中间件和系统集成等技术协同攻关,实现超高频和微波RFID技术的整体提升。
微型和智能传感器:面向物联网产业发展的需求,开展传感器敏感元件、微纳制造和智能系统集成等技术联合研发,实现传感器的新型化、小型化和智能化。
位置感知:基于物联网重点应用领域,开展基带芯片、射频芯片、天线、导航电子地图软件等技术合作开发,实现导航模块的多模兼容、高性能、小型化和低成本。
2信息传输技术
无线传感器网络:开展传感器节点及 *** 作系统、近距离无线通信协议、传感器网络组网等技术研究,开发出低功耗、高性能、适用范围广的无线传感网系统和产品。
异构网络融合:加强无线传感器网络、移动通信网、互联网、专网等各种网络间相互融合技术的研发,实现异构网络的稳定、快捷、低成本融合。
3信息处理技术
海量数据存储:围绕重点应用行业,开展海量数据新型存储介质、网络存储、虚拟存储等技术的研发,实现海量数据存储的安全、稳定和可靠。
数据挖掘:瞄准物联网产业发展重点领域,集中开展各种数据挖掘理论、模型和方法的研究,实现国产数据挖掘技术在物联网重点应用领域的全面推广。
图像视频智能分析:结合经济和社会发展实际应用,有针对性的开展图像视频智能分析理论与方法的研究,实现图像视频智能分析软件在物联网市场的广泛应用。
4信息安全技术
构建“可管、可控、可信”的物联网安全体系架构,研究物联网安全等级保护和安全测评等关键技术,提升物联网信息安全保障水平。
关键技术相见《2020物联网技术部署》一、从“信息高速公路”到“物联网”
1993年,美国政府宣布实施一项新的高科技计划——“国家信息基础设施”,旨在以因特网为雏形,兴建信息时代的高速公路——“信息高速公路”,使所有的美国人方便地共享海量的信息资源。这一计划的提出,导致美国信息产业高速发展,进入了以网络经济为主导的新经济时代,创造了巨大的经济效益和社会效益。如今面对来势凶猛的金融危机,美国的经济社会发展面临着前所未有的挑战,亟需一个全新的经济增长点拉动经济走出低谷并再次迎接长时间的繁荣。由此,物联网战略——“智慧的地球”应运而生。
2008年的时候IBM提出了智慧地球的计划,该计划的核心就是物联网。物联网具备极其广泛的行业覆盖度以及影响力。物联网的发展不仅能促进新兴信息技术产业的发展,而且还能带动诸如智能能源、智能运输、智能医疗等诸多传统行业的发展。将物联网技术引入家庭生活,还能带来智能家居。由于物联网能够全面改善居民生活水平,提高整个经济社会的运转效率,因此物联网的发展被称为是继计算机、互联网之后,世界信息产业发展的第三次浪潮。
今天,“智慧地球”战略被美国人认为与当年的“信息高速公路”有许多相似之处,同样被他们认为是振兴经济、确立竞争优势的关键战略。该战略能否掀起如当年互联网革命一样的科技和经济浪潮,为世界所瞩目。
二、“智慧城市”的研究现状
智慧城市的概念
·数字城市与物理城市
数字城市存在于网络空间(cyber space)中,虚拟的数字城市与现实的物理城市相互映射,是现实生活的物理城市在网络世界中的一个数字再现(Li Deren&Yao Yuan&Shao Zhenfeng&et al,2014)
·智慧城市定义
图“智慧城市”研究的相关知识点
智慧城市则是建立在数字城市的基础框架上,通过无所不在的 传感网 将它与现实城市关联起来,将 海量数据 存储、计算、分析和决策交由 云计算 平台处理,并按照分析决策结果对各种设施进行 自动化的控制 。(Li Deren&Shan Jie&Shao Zhenfeng et al,2013)
即, 智慧城市=物联网+大数据+云计算 。
(李德仁,姚远,邵振峰,2014)
智慧城市的建设历程
图国内外智慧城市建设历程
(王广斌,张雷,刘洪磊,2013)
三、物联网在智慧城市中的行业应用
1在民生领域中的应用。民生大数据包括有人口、环境、交通、健康、经济等数据。
2在市场监管领域的应用。可以挖掘技术来分析不同变化的市场数据,以便于相关部门及时的对市场变化做出相应的反应,提高对于未来实践的准确预警度,实时进行监管。
3在政府服务领域的应用。可以共享帮助政府的各个部门间或政府与市民间形成信息共享。
4在基础设施领域的应用。可以更加方便对交通和电力等设施进行数据的采集和分析,能够更加完善的促进城市基础设施建设。
“民生”一直以来都是全球物联网市场与中国本土发展最重要的切入点。居家养老、科技农业、食品追溯、车联网等一批围绕民生开展的应用正日趋成熟。
例:
1 比如一个产品“伴”系统。通过一个传感器、一块大垫子,就可以监控家中老人的身体状况,并作出判断是否需要通知子女或社区医生。通过垫在床脚处的传感器,远程监控中心可以发现老人生理数据上的异动,如心跳、血压发生大的变化,则在远端预警。服务中心可就此发出指令,或联系子女,或联系街道以提供帮助。而另一块铺在地上的大垫子则能察觉老人是否跌倒。通过跌倒在地上的姿势、卧地时间长度等数据,可以判断是不是出了意外。这一套系统已在上海一些社区试点。
2 近年来,从毒豇豆、地沟油、瘦肉精,到漂白蘑菇、化学火锅……面对频发的食品安全事件,不禁想问,吃什么才是安全的?企业物该如何重拾消费者信任?联网技术可以作为一个全面管控体系,可以从源头上把控风险。
比如餐厨垃圾中的油脂排放到采用物联网技术的专用油桶中,通过互联网自动将油脂数量、时间、地点等信息上传至监管系统,运输车辆采用GPS跟踪路径,轨迹信息同样上传至监管系统……通过大数据技术,当发现GPS轨迹信息、油桶身份信息等数据异常时,系统会及时提醒监管部门处理。
3 美国调研公司曾调查超过600名来自教育和IT行业的领袖,其中将近一半的人相信,在未来两年内,物联网技术将会改变学生们在校园的学习方式。
具体看,智慧校园是把感应器嵌入和装备到食堂、教室、图书馆、供水系统、实验室等各种物体中,并且被普遍连接,形成“物联网”,然后将“物联网”与现有的互联网整合起来,实现教学、生活与校园资源和系统的整合。
比如流媒体视频课程和数据分析可以帮助教师跟踪学生的学习情况,根据他们的能力水平定制教学内容,以及预测学生的执行情况。
4 物联网技术在医疗领域的应用潜能同样巨大。普遍认为,未来20年内将迎来人工智能诊疗的时代。
例如儿科部会记录早产儿和患病婴儿的每一次心跳,然后将这些数据与历史数据相结合。基于这些分析,系统可以在婴儿表现出任何明显的症状之前就检测到感染,这使得医生可以早期干预和治疗。
远程医疗监护也在兴起。利用物联网技术,构建以患者为中心,基于危急重病患的远程会诊和持续监护服务体系。可以减少患者进医院和诊所的次数。
四、物联网中大数据的价值与痛点
物联网简单来说,其实就是利用互联网把现实中的所有物品利用传感器连接起来,在这个基础上会产生大量的数据。而如何从这些数据中挖掘出有用的信息,充分利用这份资源,才是最具难度和价值的。
比如监测老年人身体健康的数据,除了应用于通知子女和社区医生,还可提供给医疗机构、养老机构等。甚至可以运用这份数据,针对每位老人制定相应的养老计划。
监测食品安全的数据也是如此。除了提供给政府方便监管以外,还可以提供给餐饮机构。将后厨的信息、食材履历、厨余去向等信息在互联网平台展示,让消费者通过互联网随时走进企业。一份数据,可以同时起到监控、管理、宣传三大功能。
数据的价值是强大的。SNS霸主Facebook就将他拥有的海量用户数据玩的非常漂亮。Facebook可以知道你什么时候跟别人约会,什么时候分手。就在今年情人节后第三天,Facebook通过其开发博客公布了其数据研究部门科学家团队的一项发现,即利用Facebook网站的统计数据,可以判断发帖的用户是否、何时擦出了爱的火花。
活跃用户规模已达到27亿的Facebook掌握了数以亿计的用户信息。使用一定的模型,可以从这些数据中挖掘出无限有趣的信息。比如新的感情开始时人们最喜欢的音乐、最喜欢的商品等等。
随着物联网技术的不断进化,智慧城市的不断快速发展,各种大数据也在不断被人们所发现,并应用实际中。所以需要同步发展的是数据挖据、决策分析的能力。将大数据转化为数据资产,将智慧城市建设成智能化、互联化的城市。我觉得可能是一种计算模型。一般物联网模型我们分为感知、传输、认知、利用就是所谓的感、传、知、用。但是如果把认知层的一部分下移到感知层,可能就是你说的群智感知。因为传统的感知层一般是感知一些简单信息,如温度、湿度、图像、视频、声音等等,如果把这些信息初步的分析一下,可能就会得到更高层次的认识,如果温度+烟雾,可能就更加确定发生了火灾。
而其中的机会感知,可能就是这样一种模型。某些参数进行组合,会得到更高层次的认知,可能认识到一些机会。我也在研究物联网,但是还没那么深,共同探讨吧。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)