物联网都包括哪些技术?他们之间的关系是什么?

物联网都包括哪些技术?他们之间的关系是什么?,第1张

物联网关键技术如下:
1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。
2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。
3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。
相互之间的关系:
对象的智能标签。通过NFC、二维码、RFID等技术标识特定的对象,用于区分对象个体,例如在生活中我们使用的各种智能卡,条码标签的基本用途就是用来获得对象的识别信息;此外通过智能标签还可以用于获得对象物品所包含的扩展信息,例如智能卡上的金额余额,二维码中所包含的网址和名称等。
对象的智能控制。物联网基于云计算平台和智能网络,可以依据传感器网络用获取的数据进行决策,改变对象的行为进行控制和反馈。例如根据光线的强弱调整路灯的亮度,根据车辆的流量自动调整红绿灯间隔等。

经过30年时间,通信连接技术从模拟发展到数字,逐步进入尾声。2000年开始的3G建设和2010年开始的4G升级,逐步使人们从语音为主的通信,演进到以数据流量通信为主的新模式,语音和消息等业务模式渐渐被互联网OTT的IP化创新应用替代。
物联网产业 2017年“拐点”–物的连接超越人的连接
当人的连接超过70%渗透率,超越人的、物的连接就开始萌芽和发展。2017年,M2M单纯物的连接数将首次超过人的连接,成为新的连接形态,并将重塑通信网络、运营、业务和服务的形态。
软银孙正义在2017年全球移动大会上预测,未来30年每个人连接物的节点将超过100个,未来5年物的连接将超越500亿,未来10年将超越1000亿,2035年全球将有1万亿的物联网芯片,IoT将带来终端设备(产生数据)、云(数据分析)、人工智能的海量机会。大连接时代的序幕已经开启。
2016年6月,NB-IoT规范在全球正式发布。同时,在美国,1美元级别的物联网芯片开始面世;以LTE为代表的4G网络大规模普及,渗透率超过20%;IoT规模部署和应用爆发的条件逐步积累到临界点。2017年将是物联网的突破年。
业务&网络重构:横向多样化+纵向专业化
物联网应用场景的多样化驱动了业务、网络、运营、商业模式的重构。多样化体现在横向覆盖各个行业、纵向满足不同专业化的需求。物联网的业务场景是d性、即时变化、无限延展的,要求网络与平台具备的能力包括支持广度、深度、速度、延时、经济高效、安全等多个方面。
除了人的连接场景外,物的连接还涵盖了更多场景。以无人驾驶为例,其延时要求毫秒级、传输速度达到10Gbps级,才能确保自动驾驶的汽车不出事故。因此,5G是目前主要的网络选择,同时网络需要根据业务的优先级进行资源随选,SDN/NFV是必然的趋势。为确保在容量不断增长的情况下的传输和延时压力,网络“自上而下”构建CDN,实现从云计算到雾计算的架构改造,实现管云一体化也是重要的趋势。
多样化的接入终端和接入近场技术,对网络归一化处理和智能服务提出了新挑战。新型融合网关汇聚了各种接入技术和终端,成为边缘重构的重点。此外,从2017年世界移动大会来看,对安全问题的热烈讨论,再次对物联网安全策略管控提出了新的要求。
运营&商业重构:超越连接,平台和应用变现
物联网网络、业务的复杂性是呈指数级增长的,需要以数据洞察为中心、智能算法为驱动的新型运营平台和运营模式来支撑。这类似互联网公司的云/大数据平台,即“智能中台”。在商业上,物联网的核心是应用创新产生新价值,而运营商的长板在连接,初期需要通过连接和数据捆绑应用的方式,来实现连接和数据平台的变现。从长期看,平台将控制用户流、数据流,数据平台和应用创新的生态汇聚平台将带来资金流,是未来商业模式演进的目标。

物联网战略路径和竞争力:业务、使能、连接
物联网的发展重点在三个领域,有垂直行业,其领导者包括GE、BMW、海尔等;有互联网OTT,其领导者包括Google、Amazon、阿里等;电信领域,其领导者包括AT&T、中国移动、Vodafone等。各个领域的战略定位和战略演进路径各不相同,但遵循相同的规则,即“长板协同、远交近攻”。
垂直行业:专业业务领先
行业领导者在构建和巩固专业领导地位的基础上,按场景需求,深度、专业、模块化地吸收物联网、云、大数据、互联网技术,实现了连接、业务和运营的自动化和智能化,成为产业的引领者。如BMW、Bosche的实践开创了欧洲Industry40行业标准,并占领领先地位;GE通过每天监控和分析来自万亿设备的1000万个传感器发出的5000万条数据,通过Predix平台,实现物联网新型应用。这些案例表明,未来物联网最核心的竞争力恰恰是专业化的业务。
互联网OTT:数据/智能化领先
互联网公司在大数据、云和互联网使能技术上的领先地位和能力积累,使他们在进入通用业务领域时,展现了强大的破解和替代能力,如物流、零售、门禁等业务场景的物联网服务创新。Google、Amazon等OTT也正在将使能能力,从简单的数据分析,提升到专业化智能的高度,结合专业能力创新智能化的应用,来改造传统行业。阿里巴巴突出的“5新”正是这一战略的集中体现。专业化既是互联网公司物联网业务和服务创新的方向,也是其软肋。
电信运营商:连接领先
全球领先运营商在物联网中的长板是其连接网络,中国移动、ATT、Verizon都把NB-IoT和5G作为其大连接战略的核心战略。AT&T 2013年发布了以智能安防业务为核心的Digital Life智慧家庭业务,从家庭物联向车联网演进过渡,基于M2X能力开放平台进行平台运营,目标是实现全美三分之一的车联网基于AT&T的网络平台。中国移动发布大连接为核心的2020战略,依托强大的连接优势和OneNet物联平台(目前已接入超过560万设备,开发者数量超过27万,应用数量超过一万),率先布局万物互联的生态。Vodafone从卖SIM卡向卖服务转型,实现地域扩张和价值延展。
这些实践都展示了一个普世道理,即运营商单靠连接难以形成盈利模式,在连接的基础上构建数据化的平台,支撑和加速运营创新。平台变现和应用变现,是运营商探索物联网成功商业模式的发展方向。
战略对标 – 三类战略路径

物联网战略演进路标:从连接到数据和应用
物联网是非常复杂的生态系统,横向涵盖所有行业领域,纵向贯穿端、管、数据、云应用等所有环节。物联网的战略首先是横向选择和确定主攻的场景,其次是纵深上的能力、竞争力和市场格局、盈利模式的实现。总体来看,电信运营商物联网战略演进至少分三个阶段,表述如下。
运营商具有优势长板和综合竞争力的横向行业场景,主要有数字家庭、智慧城市(安防)、车联网等,可以将运营商的连接优势和电信级的安全、可靠、本地化、端到端等服务优势结合起来。纵向上,运营商需要遵循构建长板、依托优势,进行生长的原则,优先聚焦连接网络的构建,在此基础上逐步建设数据能力、发展应用创新的平台,促发生态化的应用创新。
物联网IoT三步走战略–“菱形”突击
阶段一:连接为王
在初期,运营商的战略重心无疑是构建强大的物联网连接网络,重点打造一张基于NB-IoT的全网覆盖的网络,扩展LTE的连接到物的连接,试点5G在物联网上的应用,同时尝试蓝牙、WiFi、Zigbee等连接技术支持的近场物联网网络融合。战略合作的重点是实现和领先物联网应用创新SP合作,通过API将网络能力开放出去,支撑运营的创新,快速实现破局。
阶段二:数据为王
在网络领先地位逐步构建后,运营商基于物联网场景复杂、业务多样的特点,实现基于数据的精准创新、智慧运营、精益管理成为新瓶颈和业务创新的新机会。这个阶段,运营商应构建基于智能中台的管云一体化网络,实现连接网络的“由哑到智”,基于网络发展打造智能运营的数据平台,支撑业务创新和精准高效的客户服务。
阶段三:应用为王
数据平台的强大和扩展性将使运营商拥有构建应用汇聚平台的能力。类似移动互联网领域的APP Store,运营商将基于IoT Store,支撑、触发各个行业的业务和服务创新。生态创新成为运营商新的战略控制点。
运营商最终的战略愿景是实现在物联网“倒梯形”价值视图上的“菱形”站位,即确保数据平台和业务创新的控制点,实现网络连接的长久溢价变现。

小结
物联网IoT将在2017年迎来拐点。运营商需要依托优势,识别战略控制点,逐步构建新生态领域里的长板和战略控制点,实现在物联网领域的创新和成功转型,迎接继消费互联网之后的家庭互联网和产业互联网又一波新蓝海的到来。
以上由物联传媒转载提供,如有侵权联系删除

在考虑Hadoop生态系统中的各种引擎时,重要的是要了解每个引擎在某些用例下效果最佳,并且企业可能需要使用多种工具组合才能满足每个所需的用例。话虽如此,这里是对Apache Spark的一些顶级用例的回顾。

一、流数据

Apache Spark的关键用例是其处理流数据的能力。由于每天要处理大量数据,因此对于公司而言,实时流传输和分析数据变得至关重要。Spark Streaming具有处理这种额外工作负载的能力。一些专家甚至认为,无论哪种类型,Spark都可以成为流计算应用程序的首选平台。提出此要求的原因是,Spark Streaming统一了不同的数据处理功能,从而使开发人员可以使用单个框架来满足其所有处理需求。

当今企业使用Spark Streaming的一般方式包括:

1、流式ETL –在数据仓库环境中用于批处理的传统ETL(提取,转换,加载)工具必须读取数据,将其转换为数据库兼容格式,然后再将其写入目标数据库。使用Streaming ETL,在将数据推送到数据存储之前,将对其进行连续的清理和聚合。

2、数据充实 –这种Spark Streaming功能通过将实时数据与静态数据相结合来充实实时数据,从而使组织能够进行更完整的实时数据分析。在线广告商使用数据充实功能将历史客户数据与实时客户行为数据结合起来,并根据客户的行为实时提供更多个性化和针对性的广告。

3、触发事件检测 – Spark Streaming使组织可以检测到可能对系统内部潜在严重问题的罕见或异常行为(“触发事件”)并做出快速响应。金融机构使用触发器来检测欺诈性交易并阻止其欺诈行为。医院还使用触发器来检测潜在的危险健康变化,同时监视患者的生命体征-向正确的护理人员发送自动警报,然后他们可以立即采取适当的措施。

4、复杂的会话分析 –使用Spark Streaming,与实时会话有关的事件(例如登录网站或应用程序后的用户活动)可以组合在一起并进行快速分析。会话信息还可以用于不断更新机器学习模型。诸如Netflix之类的公司使用此功能可立即了解用户在其网站上的参与方式,并提供更多实时**推荐。

二、机器学习

许多Apache Spark用例中的另一个是它的机器学习功能。

Spark带有用于执行高级分析的集成框架,该框架可帮助用户对数据集进行重复查询,这从本质上讲就是处理机器学习算法。在此框架中找到的组件包括Spark的可扩展机器学习库(MLlib)。MLlib可以在诸如聚类,分类和降维等领域中工作。所有这些使Spark可以用于一些非常常见的大数据功能,例如预测智能,用于营销目的的客户细分以及情感分析。使用推荐引擎的公司将发现Spark可以快速完成工作。

网络安全是Spark 机器学习功能的一个很好的商业案例。通过使用Spark堆栈的各种组件,安全提供程序可以对数据包进行实时检查,以发现恶意活动的痕迹。在前端,Spark Streaming允许安全分析人员在将数据包传递到存储平台之前检查已知威胁。到达存储区后,数据包将通过其他堆栈组件(例如MLlib)进行进一步分析。因此,安全提供商可以在不断发展的过程中了解新的威胁-始终领先于黑客,同时实时保护其客户。

三、互动分析

Spark最显着的功能之一就是其交互式分析功能。MapReduce是为处理批处理而构建的,而Hive或Pig等SQL-on-Hadoop引擎通常太慢,无法进行交互式分析。但是,Apache Spark足够快,可以执行探索性查询而无需采样。Spark还与包括SQL,R和Python在内的多种开发语言接口。通过将Spark与可视化工具结合使用,可以交互地处理和可视化复杂的数据集。

下一版本的Apache Spark(Spark 20)将于今年的4月或5月首次亮相,它将具有一项新功能- 结构化流 -使用户能够对实时数据执行交互式查询。通过将实时流与其他类型的数据分析相结合,预计结构化流将通过允许用户针对Web访问者当前会话运行交互式查询来促进Web分析。它也可以用于将机器学习算法应用于实时数据。在这种情况下,将对旧数据进行算法训练,然后将其重定向以合并新的数据,并在其进入内存时从中学习。

四、雾计算

尽管大数据分析可能会引起广泛关注,但真正激发技术界想象力的概念是物联网(IoT)。物联网通过微型传感器将对象和设备嵌入在一起,这些微型传感器彼此之间以及与用户进行通信,从而创建了一个完全互连的世界。这个世界收集了大量数据,对其进行处理,并提供革命性的新功能和应用程序供人们在日常生活中使用。但是,随着物联网的扩展,对大量,种类繁多的机器和传感器数据进行大规模并行处理的需求也随之增加。但是,利用云中的当前分析功能很难管理所有这些处理。

那就是雾计算和Apache Spark出现的地方。

雾计算将数据处理和存储分散化,而不是在网络边缘执行这些功能。但是,雾计算为处理分散数据带来了新的复杂性,因为它越来越需要低延迟,机器学习的大规模并行处理以及极其复杂的图形分析算法。幸运的是,有了Spark Streaming等关键堆栈组件,交互式实时查询工具(Shark),机器学习库(MLib)和图形分析引擎(GraphX),Spark不仅具有雾计算解决方案的资格。实际上,随着物联网行业逐渐不可避免地融合,许多行业专家预测,与其他开源平台相比,Spark有可能成为事实上的雾基础设施。

现实世界中的火花

如前所述,在线广告商和诸如Netflix之类的公司正在利用Spark获得见识和竞争优势。其他也从Spark受益的著名企业是:

Uber –这家跨国在线出租车调度公司每天都从其移动用户那里收集TB级的事件数据。通过使用Kafka,Spark Streaming和HDFS构建连续的ETL管道,Uber可以在收集原始非结构化事件数据时将其转换为结构化数据,然后将其用于进一步和更复杂的分析。

Pinterest –通过类似的ETL管道,Pinterest可以利用Spark Streaming即时了解世界各地的用户如何与Pins互动。因此,当人们浏览站点并查看相关的图钉时,Pinterest可以提出更相关的建议,以帮助他们选择食谱,确定要购买的产品或计划前往各个目的地的行程。

Conviva –这家流媒体视频公司每月平均约有400万个视频供稿,仅次于YouTube。Conviva使用Spark通过优化视频流和管理实时视频流量来减少客户流失,从而保持一致的流畅,高质量的观看体验。

何时不使用Spark

尽管它具有通用性,但这并不一定意味着Apache Spark的内存中功能最适合所有用例。更具体地说,大数据分析Apache Spark的应用实例Spark并非设计为多用户环境。Spark用户需要知道他们有权访问的内存对于数据集是否足够。添加更多的用户使此 *** 作变得更加复杂,因为用户必须协调内存使用量才能同时运行项目。由于无法处理这种类型的并发,用户将需要为大型批处理项目考虑使用备用引擎,例如Apache Hive。

随着时间的流逝,Apache Spark将继续发展自己的生态系统,变得比以前更加通用。在大数据已成为规范的世界中,组织将需要找到最佳方式来利用它。从这些Apache Spark用例可以看出,未来几年将有很多机会来了解Spark的真正功能。

随着越来越多的组织认识到从批处理过渡到实时数据分析的好处,Apache Spark的定位是可以在众多行业中获得广泛而快速的采用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13338650.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-17
下一篇 2023-07-17

发表评论

登录后才能评论

评论列表(0条)

保存