电力谐波对电网有哪些危害和影响?如何测量谐波判断谐波的好坏?

电力谐波对电网有哪些危害和影响?如何测量谐波判断谐波的好坏?,第1张

1)造成电网的功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、线路和设备过热灯,特别是三次谐波会产生非常打的中性线电流,使得配电变压器的零线电流甚至超过相线电流值,造成设备的不安全运行。谐波对电网的安全性、稳定性、可靠性的影响还表现在可能引起电网发生谐振、使正常的供电中断、事故扩大、电网解裂灯。
(2)引起变电站局部的并联或串联谐振,造成电压互感器灯设备损坏;造成变电站系统中的设备和元件产生附加的谐波损耗,引起电力变压器、电力电缆、电动机等设备发热,电容器损坏,并加速绝缘材料的老化;造成断路器电弧熄灭时间的延长,影响断路器的开断容器;造成电子元器件的继电保护或自动装置误动作;影响电子仪表和通信系统的正常工作,降低通信质量;增大附加磁场的干扰等。

二次谐波光谱检测气体的方法,可以排除很强的干扰信号,且所得检测的污染物浓度与二次谐波的信号成正比。对发射激光进行频率为f的信号调制,经被测气体后,气体产生非线性吸收。
谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。

呵呵
从周期信号的傅立叶理论来说,谐波测量就是波形的傅立叶分解。
从带通滤波器的角度说,谐波测量就是设置(并联)若干中心频率分别为各次谐波频率的窄带带通滤波器,测量这些滤波器的输出大小。
详细的说,呵呵,这里没法说,可以写成一本书的了。
更多此类的问题,更详细的资料可加我的QQ,在我的百度空间上有号码。或请查阅深圳奥特电器公司网站,这里不能发链接,否则要被处罚。

有专业的测量仪器,如有需要我公司可以提供测量,联系电话:0312-7163396
保定瑞祥电力设备有限公司是一家是集研发、生产、销售、应用于一体的高新技术企业。公司成立于2005年10月,是专业从事电力系统谐波滤波无功补偿装置的专业生产厂家。产品以节电、环保、高效为方向,主要服务于冶金、电力、石油、化工等系统。
当今电力电子设备高速发展,电力电子装置的广泛应用给人们带来工作环境的改善和用电效能的提高,但同时也带来了谐波污染和电压波形的变坏。严重的谐波污染影响电器设备的正常工作,对供电系统运行危害很大。它可能使电容器过载损坏,电机运行不稳定,继电保护装置误动作,计算机等敏感电器产生数据错误。
电力滤波补偿装置具有滤波兼无功补偿的功能,在滤除高次谐波的同时提高功率因数,保护供电系统安全。其以技术成熟、结构简单、造价低廉、对高次谐波的滤除有明显的抑制作用,使谐波含量大幅降低,达到国家标准要求,已广泛应用于各种谐波的供电系统中。
作为一家以科技产品为主的企业,瑞祥一直把“创新,品质,服务”的理念,深化到每一个生产及管理环节上。开发生产有自主知识产权,适合中国国情的电力产品。是祥瑞人不断为之奋斗的目标。提供优质完善的服务是瑞祥不变的经营宗旨。
公司产品列表:TSF-RXI型电力滤波补偿装置,TSF-RXⅡ型电力滤波补偿装置,LC-RXⅠ滤波无功补偿装置,LC-RXⅡ滤波补偿装置,FC-RX I型高压电力滤波补偿装置,FC-RX Ⅱ型滤波补偿装置,MC-RX型电力滤波装置,电力谐波分析仪,电能质量在线监测装置。

一、谐波的产生 在理想的干净供电系统中,电流和电压都是正弦波的。在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。
用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。在电力系统中,谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。由于半导体晶闸管的开关 *** 作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。
谐波电流的产生是与功率转换器的脉冲数相关的。6脉冲设备仅有5、7、11、13、17、19 n倍于电网频率。功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。
其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3次谐波(150赫兹)。
在供电网络阻抗(电阻)下这样的非正弦曲线电流导致一个非正弦曲线的电压降。在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。次数越高,谐波分量的振幅越低。
只要哪里有谐波源那里就有谐波产生。也有可能,谐波分量通过供电网络到达用户网络。例如,供电网络中一个用户工厂的运转可能被相邻的另一个用户设备产生的谐波所干扰。
二、谐波的危害
1、降低系统容量如变压器、断路器、电缆等; 2、加速设备老化,缩短设备使用寿命,甚至损坏设备; 3、危害生产安全与稳定; 4、浪费电能等。
三、谐波测量的主要方法
1、带阻滤波法。 这是一种最为简单的谐波电流检测方法,其基本原理是设计一个低阻滤波器,将基波分量滤除,从而获得总的谐波电流量。这种方法过于简单,精度很低,不能满足谐波分析的需要,一般不用。
2、带通选频法和FFT变换法。带通选频方法采用多个窄带滤波器,逐次选出各次谐波分量,基本原理如图1所示。利用FFT变换来检测电力谐波是一种以数字信号处理为基础的测量方法,其基本过程是对待测信号(电压或电流)进行采样,经A/D转换,再用计算机进行傅里叶变换,得到各次谐波的幅值和相位系数。
这两种方法都可以检测到各次谐波的含量,但以模拟滤波器为基础的带通选频法装置,结构复杂,元件多,测量精度受元件参数、环境温度和湿度变化的影响大,且没有自适应能力;后一种检测方法其优点是可同时测量多个回路,能自动定时测量。缺点是采样点的个数限制谐波测量的最高次数,具有较长的时间延迟,实时性较差。
3、瞬时功率矢量法
1984年,日本学者HAKagi等提出瞬时无功功率理论,并在此基础上提出了2种谐波电流的检测方法:p-q法和ip-iq法。这两种方法都能准确地测量对称的三相三线制电路的谐波值。ip-iq法适用范围广,不仅在电网电压畸变时适用,在电网电压不对称时也同样有效。而使用p-q法测量电网电压畸变时的谐波会存在较大误差。这2种方法的优点是当电网电压对称且无畸变时,各电流分量(基波正序无功分量、不对称分量及高次谐波分量)的测量电路比较简单,并且延时小。虽然被测量的电流中谐波构成和采用滤波器的不同,因而会有不同的延时,但延时最多不超过1个电源周期。如电网中最典型的谐波源――三相整流器,其检测的延时约为1/6周期。可见,该方法具有很好的实时性,缺点是硬件多,花费大。此理论是基于三相三线制电路。对于单相电路,必须首先将三相电路分解,然后构造基于瞬时无功功率理论的单相电路谐波测量框图。仿真表明该方法是可行的,其检测性能优于以往的单相谐波电流的测量方法。瞬时无功功率理论解决了谐波和无功功率的瞬时检测及不用储能元件实现谐波和无功补偿等问题,对治理谐波和研发无功补偿装置等起到了很大的推动作用。
4、小波分析法
对于一般的谐波检测,如电力部门出于管理而检测,需要获得的是各次谐波的含量,而对于谐波的时间则不关心,因此傅里叶变换就满足要求。然而在对谐波电流进行动态控制时,不必分解出各次谐波分量,只需检测出除基波电流外的总畸变电流,但对出现谐波的时间感兴趣,对此傅里叶变换无能为力。小波变换由于克服了傅里叶变换在频域完全局部化而在时域完全无局部性的缺点,即它在时域和频域同时具有局部性,因此通过小波变换对谐波信号进行分析可获得所对应的时间信息。小波变换应用在谐波测量方面尚处于初始阶段。将小波变换和神经网络结合起来对谐波进行分析,并设计和开发基于小波变换的谐波监测仪将会是非常有意义的工作。
5、自适应检测法
该方法基于自适应干扰抵消原理,将电压作为参考输入,负载电流作为原始输入,从负载电流中消去与电压波形相同的有功分量,得到需要补偿的谐波与无功分量。该自适应检测系统的特点是在电压波形畸变情况下也具有较好的自适应能力,缺点是动态响应速度较慢。在此基础上,又有学者提出一种基于神经元的自适应谐波的电流检测法。
综上所述,带阻滤波法是早期模拟式谐波测量装置的基本原理;基于瞬时无功功率理论的瞬时空间矢量法可用于谐波的瞬时检测,也可用于无功补偿等谐波治理领域,且方法简单易行,性能良好,并已趋于完善和成熟,今后仍将占主导地位;基于神经元的自适应谐波电流检测法和小波分析法,是正在研究的新方法,可以提高谐波测量的实时性和精度,但实际应用还有待于进一步验证。
四、谐波的抑制措施
在电力系统的设计中,加大系统短路容量;提高供电电压等级;增加变流装置的脉动数;改善系统的运行方式,如:尽可能保持三相负荷平衡,避免各类电磁系统饱和,错开系统谐振点,由专门电路为谐波源负载供电等,都能减小系统中的谐波成份。但其中许多措施都会大大增加系统和设备的投资,且有些方法的效果并不一定很理想。因此,设置交流滤波器是有效抑制谐波和改善波形的积极措施,同时滤波器还能向系统提供所需的部分或全部无功。图2中,(a)为接线系统,(b)为等效电路。
整流器、逆变器等非线性负荷,因为其本身可以表示为产生高次谐波电流的恒流源,故可用图2来表示高次谐波的等效电路。
流向电网的谐波电流IS和母线的谐波电压VB可表示为:
IS=InZL/(ZS+ZL)
VB=ISZS(2)
式中:
IS为注入电网的谐波电流;
In为谐波电流;
VB为谐波电压;
ZS为电网阻抗;
ZL为电网负载阻抗。
该式表明,当电网阻抗(ZS)一定时,相对减小系统负载阻抗(ZL),就可以减小流向电网的谐波电流和母线的谐波电压(电压畸变)。谐波干扰取决于流向电网的谐波电流或电压畸变的大小。抑制谐波的目的,就是要降低流向电网的谐波电流。
因此,可以采取以下措施:
(1)对于电力系统,设置谐波低阻抗的分流电路,从而减小负载阻抗ZL,降低注入电网的谐波电流IS;也就是被动式滤波器,即常用的LC滤波器
(2)提供逆相位的谐波,以抵消非线性负荷所产生的谐波电流In,达到消除谐波的目的。也就是能动式滤波器,即有源滤波器。
(3)防止并联电容器组对谐波的放大,在电网中并联电容器组起改善功率因数和调节电压的作用。当谐波存在时,在一定的参数下电容器组会对谐波起放大作用,危及电容器本身和附近电气设备的安全。可采取串联电抗器,或将电容器组的某些支路改为滤波器,还可以采取限定电容器组的投入容量,避免电容器对谐波的放大。
(4)加装静止无功补偿装置,快速变化的谐波源,如电弧炉、电力机车和卷扬机等,除了产生谐波外,往往还会引起供电电压的波动和闪变,有的还会造成系统电压三相不平衡,严重影响公用电网的电能质量。在谐波源处并联装设静止无功补偿装置,可有效减小波动的谐波量,同时可以控制电压波动、电压闪变、三相不平衡,还可补偿功率因数。
(5)降低谐波源的谐波含量,在谐波源上采取措施,最大限度地避免谐波的产生。这种方法能够提高电网质量,可大大节省因消除谐波影响而支出的费用。
(6)改善供电环境等。
六、结束语
本文详细分析了综合动态的谐波治理措施同时考虑电网无功功率补偿问题,这是电力系统目前面临的一大课题。要消除谐波污染,除在电力系统采取有效的控制措施外,还要在设计、制造和使用非线性负载时,采取有力的谐波控制措施,减小谐波侵入电网,从而减少由于谐波带来的巨大损失。

变频驱动器VFD(variablefrequencydrive)在关键电机的调速和优化功率消耗方面具有许多优点,但是也很容易造成相邻配电系统的谐波失真。配电系统能够吸收部分失真,但是当VFD直接连接在发电机驱动的电路上时,产生的干扰也可能会影响 *** 作的可靠性。
通常,水处理厂配备有VFD、臭氧发生器以及其它可以造成谐波失真的负载。多数的工厂里也配置了紧急备用发电机,以备外部电源停止或非正常时为重要设备供电。而工厂的 *** 作人员一直担心,在应急 *** 作时间延长的情况下,发电机可能发生故障。为了确定故障的程度, *** 作人员编辑谐波测量结果,比较正常使用和使用备用发电机时的失真程度,并根据测得的数据通过工程分析来评估谐波抑制技术。
多大程度的失真是可以接受的?
IEEE519-1992标准《电力系统谐波控制推荐规程和要求》提供了一些关于“多大程度的谐波失真可以接受”的指导方针。最初,该标准作为推荐规程供电力使用单位及其客户参考;该标准被广大工厂企业作为测定现有设备谐波电流的指南性文件加以普及和使用。
对淡化厂的正常电力使用和备用发电机供电所进行的测试表明,主要的电力系统参数,包括电压校准和失衡以及电流失衡,都在可接受的范围内。尽管谐波失真的程度没有严重到对工厂的正常生产运行有明显的影响,进一步减弱谐波仍然是不可忽略的工作。 *** 作员关心谐波带来的长期影响,而由于使用备用发电机时的谐波常常超过IEEE519-1992标准所规定的谐波范围,他们更担心应急 *** 作时间延长的情况下发电机能否稳定可靠地继续工作。此外,谐波减弱技术也能延长设备使用寿命,增强系统的可靠性。
谐波限值表显示了与通常用于电力发生设备的IEEE519-1992标准谐波限值比较的测试结果。和演示的一样,在线测量的数据超过了这个限值。除此以外,施耐德电气还进行了不同抑波技术的计算机仿真。
通过谐波仿真可以估算不同的情况下谐波电流的减少量。如前面所提到的,在250hp设备和60hp设备同时工作就已经获得了第5次和7次谐波电流的谐波消除效果。系统分别要求5次谐波的电流减少27%,7次谐波的电流减少16%,尽管如此造成了总RMS电流增加了19%。最坏的情况也就是最高谐波峰值,在只有250hp设备工作时才会出现。总体来说,有4种解决方式:
绕过一个ΔY绝缘变压器——每个250hp设备有ΔY绝缘变压器。绕过其中一个ΔY绝缘变压器就能获得不错的效果,即减少了谐波电流失真的数量。再加上上面提到的250hp和60hp设备同时使用的方法,减弱了第5次和7次的谐波电流。而旁通回路的第5次和7次谐波电流保持不变,一旦再运行一到两个250hp设备,就会产生额外的消除作用。然而,这项技术仅适用于没有更有效的解决办法的情况下的临时改造。
替换一个ΔY绝缘变压器——一种更为有效的谐波减弱技术就是用ΔY交错绕组变压器取代其中一个ΔY绝缘变压器,而非绕过它。因为谐波电流不是通过ΔY交错绕组变压器周相移动,所以这样的改进也增强了第5次和7次电流的消除效应。这种方法同时也保留了谐波衰减的正面影响。
无源谐波滤波器——可以在480V主电路安装一个5次无源谐波滤波器,但是由于无源谐波滤波器也会增加基础功率因数,所以这种方法并不实际。由于设备的功率因数已经很高(全负载时可达94%),在工厂没有达到最先进的功率因数的情况下,系统无法容忍更多的负荷。
有源谐波滤波器——该厂最佳的解决方案是通过在480V主电路上安装有源滤波器来减弱谐波电流。有源滤波器能够测算出负载所需的谐波电流量,并且使电流产生180°的相位移。该方法可以很大程度上减弱谐波失真的程度,通常被用在必须严格遵守谐波限值的场合。此外,施耐德电气推荐安装现场功率监控设备,从而可以跟踪谐波失真中的设备性能、电压质量、干扰和费用的情况。
过渡性的和永久的解决方案
通过临时设置旁路绕过绝缘变压器,从而增加谐波消除,工厂降低了谐波的失真程度。这一非常规的手段帮助工厂度过了整个夏季运行高峰。之后,工作人员在主配电盘上安装了有源谐波滤波器。该设备最终消除了谐波失真的影响。安装有源滤波器后的测量结果显示电流失真低于8%,电压失真低于2%。 早在三十年代,FHBrittain的扬声器评价十一项测试项目中就有谐波失真,五十年代LLBrenek提出的扬声器最重要的特性八项中有它,而今各电声测试系统。从几十万人民币的B&K系统到几千元人民币的国产测试系统都把它做为重要的测量对象。可见谐波失真对电声界一直是个非常重要的参数。
谐波失真:当把基频为f的正弦信号输入扬声器时,扬声器输出除f以外,由扬声器的非线性失真而产生了,同f成整数倍的各次谐波成分:2f3f……nf,我们称之为谐波失真。谐波失真分为三类,而我们常用到的为THD(TOTALHARMONICDISTORTION)总谐波失真和几次谐波失真(HARMONICDISTORTION)及特性总谐波失真(在实际测量中还会细分为偶次谐波失真,奇次谐波失真和SUB-HARMONICS),它们分别的特性规定为:由失真产生的总谐波声压有效值与总输出声压有效值Pt之比;由失真产生的第几次谐波声压有效值与总输出声压有效值Pt之比;由失真产生的总谐波声压的有效值与平均特性声压Pm之比。在失真的分类中把它划归扬声器的非线性失真。
对待谐波失真我们可以用法国著名哲学大师的萨特的存在主义来看待它!谐波失真客观存在!现我们以锥型扬声器为例:在扬声器低频时或在大振幅运动时扬声器的折环及d波(定心支片)组成的支撑系统不再符合线性的胡克定律(或称为虎克定律)如在对扬声器进行纯音检听时折环边产生的“啪啪”声,俗称“打边”这是非线性的一个极端表现;在让布边折环的扬声器做大振幅(fo附近,并非所有的扬声器振动的最大振幅都在fo处)的运动时,我们可以很明显的看到布边的扭曲变形。在布边折环上常会“打”上阻尼胶,阻尼胶又分“油性”和“水性”,在PA喇叭上多用的是“油性”,但在高档的厂品上我们常可看在橡胶折环上“打”有透明发亮的水性阻尼胶,一般“打”胶不超过折环的1/2,但这种打胶方式和胶量很难控制;在橡胶折环改善上,常对折环的形状处理,但在这个方面的处理方法,国内做的不够,国内在对喇叭单体设计时常重视折环的质量和顺性而忽略折环的另一个量及橡胶的阻尼,虽然在分析锥型扬声器时多用集中参数系统来分析,那是特指在低频时,但是我们是否都把锥型扬声器做超低音和低音呢?此时谐波失真与西勒-斯莫尔参数(Thille-SmallDepartments)中的Qm(力学品质因数)有着很微妙的联系。
华司(上导极板)与T铁的铁拄间的磁感应密度沿轴向(音圈振动方向)的不均匀性,是产生谐波失真的另一原因。国内普遍运用的方法的用对称磁路来改善它(如图所示),在低音单元上,知其然者乘少,未曾看到几许,细想其原因都是“金钱惹的祸”!丹麦的PELESS是的单体内侧加一个铝环来改善它!(如图所示)当然这种做法最易令人发现的做法。
从频率用是BL(磁力系数)的增加。的角度来看,中高频的谐波失真,与低频时的谐波失真是由两类不同的量起决定性作用的,在锥型扬声器中谐波失真客观存在,你只能改善,不能消除。要解决锥型扬声器的谐波失真,除非采用另类的发声原理,但这对整个行业来说是任重而道远,失真就跟测量误差一样,看人家外国厂品的广告“HALCRO------世界上失真最低的放大器”,但在国内看到某日本品牌中国公司的厂品广告上:“彻底解决音箱互调失真!”我倒,我笑,这是对国人的误导和愚弄,更显现出该公司的不负责任和无知!
谐波失真客观存在“有理”。客观测试的结果与主观感觉往环一致,从人耳的听觉机理分析人耳只能区分最初的六个~七个谐音(谐波),对六次以上的谐音很难在感觉上将它们彼此分开,因为到六阶以后的谐音,相邻的两个谐音落在人耳的基底膜上的两个对应区域已相互靠近,并覆盖在一个临界带以内,很难在感觉上将它们彼此分开。但高次谐波对音质的影响不可忽视,通过实验发现异常噪音,来自高次谐波。根据谐波失真的“阶次”,可以分为“软失真”和“硬失真”。但对扬声器来说“偶次”谐波失真和“奇次”谐波失真对音质的改善,更具有指导意义,特别是听感上。胆机在听感上大受发烧友的欢迎就它的“功劳”。从音乐声学看,乐器的基频相对于各次谐音听起来并非都是谐和的,如在乐音中谐和的谐音成分愈多,则音色丰富,纯净好听,不谐和的谐音多,则音乐色粗粝,刺耳难听,七阶以上的奇次谐波会使声音变得粗粝变得粗粝刺耳。
扬声器在中交频段的失真主要是磁路(铁心)的非线性所致,为了消除铁心所引起的非线性失真,常采用一种叫做“线性磁路”的结构,这种磁路结构的特点,是在铁心的顶部中失做成凹陷的形状,使其和导磁板相对的部分由于铁心截面积的减小而接近磁饱和状态,此时,音圈就相当于一个空心线圈,从而避免了铁心影响,减小非线性失真。
音圈的作大长冲程运动时。音圈上的音圈线跳出了气隙半磁场的均匀区,以致机电转换系数BT不能保持恒定电动力效应F=BTI的线性关系受到破坏,从而造成非线性失真。
改善由于这种原因所引起的失真,一般采用两种方法:一是采用短音圈,二是采用长音圈所谓短音圈,即音圈的长度做得比导磁板的厚度小,如图所了使音圈在振动过程中不致于跳出磁场的均匀区,从而避免了非线性失真。这种方式造成成本提交,不常用,所谓长音圈,则指的是音圈的长度,做得比华司厚度长,使音圈在振动过程中与所有的磁通相耦合,(包括均匀区和非均匀区)从而使平均磁感应密度B总体上保持恒定,以避免非线性失真,但这种方法必定造成扬声器在相同直流阻下,必定要使更粗的音圈线灵敏度下降,因你使音圈的转幅增大,音圈的质量振大,BT,你的磁间隙,因音圈线的变粗而变大,B变小,而B2T2MD。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13342359.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-18
下一篇 2023-07-18

发表评论

登录后才能评论

评论列表(0条)

保存