请分析物联网数据处理中不完整数据产生的原因

请分析物联网数据处理中不完整数据产生的原因,第1张

网络质量不稳定。因为处理数据需要较高的网络环境,网络质量不稳定会导致处理不完整,只需要更换一个良好的网络即可。数据是科学实验、检验、统计等所获得的和用于科学研究、技术设计、查证、决策等的数值。计算机数据是指计算机中能被识别和处理的物理符号。

物联网核心“三层网络”
● 感知层:将物体智能化,把物体的行为让电脑读出来
技术:智能卡、传感器、工业自动化、音频视频等
目的:让物体和事件具备智能、获得生命
● 传输层:各种物体和事件智能化后,连接成网络。
技术:光纤、电缆、无线、电磁感应、卫星通信等
目的:互联互通、全面联网
● 应用层:建立统一的数据中心,将数据应用和提供服务
技术:云计算平台服务、建立中控室、搭建硬件环境;
数据挖掘、数据分析、专家系统、行业应用
云计算:物联网产生的海量数据,需要云计算服务优化存储和处理能力
应用和服务是物联网的核心!

物联网时代,大量的数据从不同的设备传感器产生,单机数据库系统肯定无法存储这么大量的数据,在选择数据库方面,肯定要选择具有分布式能力存储的数据库。

在物联网时代,数据之间还有一个非常重要的特性,那就是数据之间的关联性。不同的数据从相互连接的互联网设备传感器中产生,由于不同的传感器相互连接,协同工作和采集数据,如何将大量具有相互关联的数据保存在数据库,这里我推荐使用图数据库来进行存储。

图数据库相对于其他数据库来说,最大的优势就是查询数据之间的关联性会更加快速,消耗的时间会更短。打个比方,在社交网络中,我们想要查询在用户A的粉丝中,粉丝关注了B的用户。如果使用传统关系型数据库来存储用户的关注关系,在上面的数据统计中,要使用两层Join才能算出结果,而关系型数据库Join *** 作会很慢。使用图型数据库存储数据的话,图中的点为用户,边为用户的关注关系,在查询A的粉丝,同时粉丝也关注B的用户,只需要遍历两层关注关系就能很快查询到结果。

图数据库也属于NoSql数据库的一种,常用的图形数据库有,JanusGraph、Neo4j、Cayley、dgraph。不同的图数据库,底层实现也不尽相同。

JanusGraph是一种分布式图数据库,由Java语言开发,可以使用Hadoop生态存储系统作为数据源,构建出数据大图。是TiTan图数据库的开源版本,支持事务的ACID。

Neo4j是一种单机的图数据库,其优势就是能够快速安装并且使用,便于新同学上手。你的数据量一般不大的话,我推荐使用Neo4j,直接使用Neo4j相关的API就可以将数据模型图构建而出,然后使用Neo4jCypher查询语言,就可以分析数据,Cypher是一种类SQL的语言。

Cayley和Dgraph都是使用Go语言实现的图数据库,Go语言的最大特性就是其编译速度和开发便捷性,Cayley和Dgraph都支持分布式存储,不过都不支持SQL语言查询数据,Dgraph不支持事务,而Cayley支持事务,不过在开源社区,Dgraph比Cayley更加活跃,这里优先建议使用Dgraph作为物联网的存储数据库。

总体来说,在物联网时代,一定要学会使用图数据库,在分析大量数据之间的关联性时,图数据库就能够派上用场,图数据库最大的优势就是分析不同数据之间的关联性。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13354548.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-20
下一篇 2023-07-20

发表评论

登录后才能评论

评论列表(0条)

保存