自从这篇文章发表以来,世界上已经出现了许多颠覆性的物联网商业模式创新。例如:iRobot公司凭借其自主物联网连接的吸尘机器人,实现了从零到900万台物联网连接设备的销售量,从而改变整个吸尘器行业的状态;Thyssenkrupp电梯物联网连接的电梯已经从零增加到130,000个,其三个主要竞争对手Otis、Schindler和Kone都引入了类似的基于IoT的商业模式;共享单车行业,在美国已经从零发展到3900万人次,基本上就是通过物联网技术的出现而创建的。
还有成千上万的新智能产品/物联网商业模式的例子,还在酝酿中。那些目前正在(或计划将)智能互联产品推向市场的企业,可以从这些早期的创新者身上学到什么?前不久,市场咨询公司IoT Analytics发布了《2020 IoT商业化和商业模式采用》,探讨了全球领先的设备和产品制造商(OEM)在过去5年如何成功推出智能互联物联网产品以及心得体会。
开发一个物联网业务模式或业务模型并将之商业化并不简单,但可能会是颠覆性的“ 游戏 规则改变者”。61%参与了IoT Analytics研究报告者声称,与竞争对手相比,物联网商业模式让其公司获得了竞争优势。
将智能连接产品推向市场时,需要进行很多考量,例如:是首先接触现有客户,还是瞄准新客户;可以通过硬件、软件、服务或数据获利,还是这些的组合;是一次性收费,还是按月收费,甚至可能是按使用量收费;是否免费提供某些功能;是按成本定价,还是按利润率定价,或者是通过亏损以获得早期市场份额;是直接销售给客户,还是通过第三方(市场)销售等等。
物联网商业模式与产品开发和产品商业化这两个相邻的环节紧密相连。IoT Analytics将其分为3个部分: 开发物联网产品(例如上市时间和开发功能)、开发物联网商业模式(该分析主要基于Zollenkop框架,着眼于三个要素:市场定位、价值链和收入模型)以及物联网产品的商业化(例如:确定合适的价格水平、推动采用的措施和衡量成功的KPI)。
IoT Analytics的报告就这些问题给出了相应的6个观点,并强调了哪些物联网商业模式被认为更成功。
观点1。智能连接物联网产品,从内部项目启动到第一个付费用户平均需要23个月。然而,从开始到第一次付费客户所需的总时间,相比平均值有巨大差异。最快的实现发生在8个月,而最长的可能需要长达76个月(根据IoT Analytics的分析)。
观点2。有许多因素驱动了将智能互联物联网产品推向市场的复杂性。特别是较大的公司必须花更多的时间来协调多个部门和流程。根据分析,典型的物联网产品的引入会“主要影响”到6个部门(其中IT和R&D受影响最大)。
推动IT和研发部门工作的,是在IoT互联产品中加入许多软件特性和服务。物联网产品平均拥有12项新功能,几乎所有物联网公司(91%)都为客户提供监控仪表板,而库存管理或工作流优化等功能则很少见。
观点3。在这次分析中,近四分之三的受访者开发了一款全新的或主要经过重新设计的产品,而这种产品以前并不存在。大多数受访者还表示,物联网产品的销售对象是一些新的决策者(以及一些现有的决策者)。结果是,52%的物联网商业模式可以归类为“多元化”,只有11%归类为“市场渗透”,即在现有产品加上小的附加功能,销售给和以前完全相同的决策者。
观点4。目前,超过95%的物联网硬件都已获利。然而,在大多数情况下,硬件只是多种变现方式的一部分。大多数研究参与者预计,未来两年,服务(包括传统和数字)和数据的重要性将显著提高。随着硬件获利重要性的下降,预计基于时间、使用和成功而盈利的模式的重要性将会增加。
欧洲某 汽车 行业高级IT经理表示:“我们未来的重点将更多地放在数字服务上。当前我们对用户只有一个接触点:安装硬件。展望未来,随着数据日趋成熟,以及拥有更好的远程软件更新能力,我们将能够提供更多以用户为中心的SaaS产品/功能,客户可以在网上购买。”
观点5。物联网解决方案的成功商业化在产品推出前很久就开始了。美国某机械设备制造商高级产品经理表示:“在构建和销售解决方案之前,清楚了解客户的需求至关重要。”
分析显示,不同地区的客户采用率存在巨大差异,一些功能显然比其它功能更受客户欢迎。客户采用率排名占前四分之一的两项功能分别是“状态监视”和“预测性维护”,这与IoT Analytics先前关于预测性维护主题的报告相符。
因此,许多研究参与者指出,教育自己的团队,特别是面向客户的员工的重要性就不足为奇了。美国某机械设备制造商高级产品经理表示:“对员工的培训是一项艰巨的任务,因为该技术对公司整体来说是新技术,并且所有领域的专家都需要接受培训。”
当前,我们正在进入全新的“咆哮20年”的开始。这是ARM与经济学人在今年上半年推出的《物联网商业指数2020》所提示的变化:即所有产业面对的障碍正逐渐降低,超过一半的受访企业已经处于物联网网络部署初期或大规模部署阶段。《物联网商业指数2020》强调,物联网的“商业价值之路”已经出现,企业在物联网方面的初期投资通常能够明确的投资回报,而随着物联网数据与其它数据集的结合以及纳入整体分析中,物联网的价值也在上升。物联网的发展前景很不错,具体如下:
1更安全的保护措施。在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。
2更普遍使用智能消费品设备。IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。物联网的发展前景很不错,具体如下:
1更安全的保护措施。在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。
2更普遍使用智能消费品设备。IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。
数据挖掘应当更正确的命名为“从数据中挖掘知识”,不过后者显得过长了些。
数据挖掘——从大量数据中挖掘有趣模式和知识的过程。作为作为知识发现过程,他通常包括数据处理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。
数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进。
关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)