站在“大数据”的台风口,石油行业能起飞吗?三分钟带你全面了解

站在“大数据”的台风口,石油行业能起飞吗?三分钟带你全面了解,第1张

加大油气勘探开发力度、保障国家能源安全是当前面临的迫切任务。但随着优质资源的不断开发,剩余资源开采难度越来越大,成本越来越高,迫切需要创新技术提升油气勘探开发效率和效益。在大数据、人工智能( artificial intelligence,AI)、5G、云计算、物联网等技术推动下,油气田的智能化水平将会越来越高,这既是油田降本提质增效的有效途径,也是油气技术发展规律的必然趋势。

1、大数据技术定义

2012年兴起的“大数据”潮流,让“Big Data”这个IT圈子里的名词一下风靡了各个行业。虽然大数据的重要性得到了大家的一致认同,但是对大数据的理解却众说纷纭。大数据是一个抽象的概念,除去数据量庞大这一特征,大数据还有一些其他的特征,这些特征决定了大数据与“海量数据”和“非常大的数据”这些概念之间的不同。

高德纳分析员Doug Laney曾于2001年在一次演讲中指出,数据增长有3个方向的挑战:数量(volume),即数据多少;速度(velocity),即资料输入、输出的速度;种类(variety),即多样性,这3方面的特征即大数据最先提出的3V模型。2011年,在国际数据公司(IDC)发布的报告中,大数据被定义为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”大数据的特点可以总结为4个V,即volume(体量浩大)、variety(模态繁多)、velocity(生成快速)和value(价值巨大但密度很低)。这种4V定义得到了更广泛的认同,指出了大数据最为核心的问题,就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。

2、大数据技术的发展

大数据是人工智能的血液,当前大数据、云计算、人工智能以及区块链技术之间的关系密不可分,也被称作数据智能。比如,先进的工业互联网,其中既有区块链技术也有大数据技术,还有云计算技术,三者合成一体,又衍生出了人工智能和物联网的概念。

在大数据基础上的人工智能,目前已进入数据智能的深度学习时代,其快速发展引起了 社会 和产业的颠覆性变化。从大数据和人工智能技术全行业的发展来看,目前美国仍处于领先地位,中国紧随其后,且具有赶超趋势。中国在人工智能相关的论文发表总数和高引论文数量实现对美国的超越,但在人工智能理论发展和技术方向的引领方面美国还占据支配地位。

3、大数据技术流程

大数据处理的关键技术流程主要包括:数据采集、数据预处理(数据清理、数据集成、数据变换等)、海量数据存储、数据分析及挖掘、数据的呈现与应用(数据可视化、数据安全与隐私等)。

4、大数据的核心算法

大数据的核心算法可以分为监督学习(有标签)和无监督学习(无标签)两大类,其中:

监督学习分为回归和分类:即给定一个样本特征,希望预测其对应的属性值,如果是离散的,那么这就是一个分类问题,反之,如果是连续的实数,这就是一个回归问题。无论是分类还是回归,都是想建立一个预测模型,给定一个输入,可以得到一个输出。不同的只是在分类问题中,是离散的;而在回归问题中是连续的。

无监督学习分为聚类和降维:即如果给定一组样本特征,我们没有对应的属性值,而是想发掘这组样本在维空间的分布,比如分析哪些样本靠的更近,哪些样本之间离得很远,这就是属于聚类问题。如果我们想用维数更低的子空间来表示原来高维的特征空间,那么这就是降维问题。聚类也是分析样本的属性,事先不知道样本的属性范围,只能凭借样本在特征空间的分布来分析样本的属性。这种问题一般更复杂。而常用的算法包括 k-means (K-均值),GMM(高斯混合模型)等。

5、大数据在油气勘探开发领域的应用

目前大数据技术在地质分析、测井解释、地震解释、甜点预测、地质建模、油藏模拟、钻井、压裂、采油、产能预测等方面均开展了大量 探索 性研究,收到了良好的效果。但是目前,大数据与油气行业相关领域的融合还处于起步阶段,面临来自数据、算法和地下未知因素的诸多挑战。未来在大数据、人工智能、5G、云计算、物联网等技术推动下,油气田的智能化水平将会快速发展,这既是油气技术发展规律的必然趋势,也是油田降本提质增效的有效途径。在发展的过程中,智能油气田建设需要油气勘探开发与大数据、人工智能、云计算以及区块链等技术的深度融合,进而催生一批油气田领域的颠覆性技术,解决油气勘探开发的技术需求,提升油气田勘探开发的经济和 社会 效益。

下期将向您详细解读大数据在油气行业的具体应用 )。

注:本文部分参考资料来源如下:

李阳,廉培庆,薛兆杰,等.大数据及人工智能在油气田开发中的应用现状及展望[J].中国石油大学学报(自然科学版),2020,44(4):1-11

Gantz J,Reinsel DExtracting Value from Chaos IDC iView Report,2011

Team O R Big Data Now:Current Perspectives from O’Reilly RadarSebastopol:O’Reilly Media,2014

Grobelnik M Big data tutorial >

数字油田的发展方向主要是“智能油田”、“智慧油田”、“透明油田”。“十五”和“十一五”期间,国内大部分油田都先后提出数字油田的目标,所采取的策略、技术、路线大同小异,都结合了本油田自己的特点,很多地方值得总结交流。国际上一些著名的油公司也纷纷提出或升级了他们的数字油田战略,尽管使用的名字有所差异。挪威国家石油公司在原来的建设基础上提出了“整合运作(Integrated Operations)”的新概念,强调“协作中心”的作用,但其基本理念仍然与数字油田的理念相同。按照两化融合思想的指导,将油田生产的自动化与信息化相结合,将物联网和云计算技术应用到油气生产流程中,已经成为国内数字油田建设的主流方向,一个新的构想——“智能油田(Intelligent Oilfield,IOF,智慧油田)”也应运而生。另一方面,以油藏等地下地质目标为着眼点的“透明油田”理念也得到广大石油地质工作者的关注,成为数字油田发展的方向之一。

工业领域物联网发展趋势分析 传统工业加速向智能化转变
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
前瞻产业研究院数据显示,2016年我国物联网产业规模超过9000亿元人民币,同比增速连续多年超过20%。物联网作为通信行业新兴应用,在万物互联的大趋势下,市场规模将进一步扩大。随着行业标准完善、技术不断进步、国家政策扶持,中国的物联网产业将延续良好的发展势头,为经济持续稳定增长提供新的动力。移动互联向万物互联的扩展浪潮,将使我国创造出相比于互联网更大的市场空间和产业机遇。
物联网利用射频识别(RFID)、GPS、摄像头、传感器、传感器网络等感知、捕获、测量的技术手段,随时随地对物体进行信息采集和获取,实现智能化的决策和控制。因此,物联网在工业领域应用过程中,物联网相关技术和产品是智能工业的核心。
工业是物联网应用的重要领域。具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,可大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,传统工业加速向智能化转变。
根据前瞻产业研究院发布的《物联网行业应用领域市场需求与投资预测分析报告》测算,2014年,国内物联网在工业领域需求规模为1260亿元;2016年,国内物联网在工业领域需求规模为1804亿元。2017年,国内物联网在工业领域需求规模约为2354亿元。
物联网在工业领域应用问题分析
1、IT安全问题
和前几次由新的硬设备、技术所带来的工业革命不同,工业40是由互联网所带来的第四次工业革命。也因此,有66%的受访者认为IT安全是一大挑战,当企业的IT系统连上网络,随时可能有一些未知的威胁出现在仓储管理系统、机器设备或供应链当中。
2、制造系统管理问题
工业40除了带来生产效率之外,同时也改变传统制造业的思维。当智能生产真正落实后,将会对制造管理系统带来巨大的变革,且势必变得更为复杂,包括整体的生产物流、人机协同作业等改变,也让员工培训更显重要。
3、通讯基础设施建设问题
通讯网络是实现工业40的重要关键,但是要建立一个让所有组织都能够配合的网络,必须要有一个一致的接口、通讯标准和规范。目前许多标准都还未建立,例如工业通讯、工程、IT安全、数字化工厂、设备整合等都还未被纳入整体参考架构中。
物联网在工业领域应用前景及发展趋势预测
近年来,我国政府通过工业化与信息化融合战略正在大力推进物联网技术向传统行业中的深度渗透。工信部于2013年9月发布的《工业化与信息化深度融合专项行动计划(2013-2018年)》中重点提出的互联网与工业融合创新试点工作已经进入了全面实施阶段。
以物联网融合创新为特征的新型网络化智能生产方式正塑造未来制造业的核心竞争力,推动形成新的产业组织方式、新的企业与用户关系、新的服务模式和新业态,推动汽车、飞机、工程装备、家电等传统工业领域向网络化、智能化、柔性化、服务化转型,孕育和推动全球新产业革命的发展。
美国制造业巨头通用电气公司充分利用物联网技术,已推出了二十余种工业互联网/物联网应用产品,涵盖了石油天然气平台监测管理、铁路机车效率分析、提升风电机组电力输出、电力公司配电系统优化、医疗云影像等各个领域。AT&T基于GE的软件平台Predix开发M2M解决方案,越来越多的工业机器将通过M2M连接到网络。
例如:物联网应用在智能工厂,具有相当广泛的应用前景,经济效益和社会效益明显。导入物联网的智能工厂,至少可以实现以下五个功能,即:电子工单、生产过程透明化、生产过程可控化、产能精确统计、车间电子看板。通过这五大功能,不但可实现制造过程信息的视觉化,对于生产管理和决策也会产生许多作用。根据物联网在智能工业的产值贡献比例来看,2023年国内物联网在工业需求规模在7821亿元左右。

行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)

本文核心数据:零售领域物联网普及率、零售领域中使用物联网的原因

物联网下游行业占比12%

零售业一直是许多新兴技术应用落地的首选,根据IoT
Analytics的数据,智能零售领域在2020年全球物联网下游细分市场中占比12%,仅位于工业、交通与能源之后。

物联网普及率达94%

物联网为零售业所带来的位置跟踪、个性化信息、库存维护等功能,能够为零售企业在企业安全、库存管理、决策建议等方面提供一定帮助。——在微软调查的公司中,94%的零售企业表示已经应用了该技术,并且有88%的组织表示,至少有一个项目已经达到了“使用”阶段。

“学习”阶段项目占比最高

尽管,物联网能够为零售企业带来管理与生产上效率的提高,但到目前为止,各地零售企业对于物联网与其零售业务的结合仍旧保持保守态度,因而从物联网项目的所处阶段的占比来看,目前为止,处于“学习”、“使用”和“试验/验证”阶段的零售物联网项目分别占总零售物联网项目的28%、26%和24%,而在“购买”阶段的物联网项目则仅有22%。

生产流程监控是物联网在制造业中的最大原因

总体而言,物联网用于提高运营效率,增强客户直接接触点。接近一半的公司表示,供应链优化是一个关键的用例,超过三分之一的公司将库存优化作为其使用该技术的主要方式。监控和安全是物联网在零售环境中的首要应用——不仅用于店内防损,还可以通过整个供应链监控商品。不太常见的是,各组织也在利用物联网进行直接的客户互动,包括自动结账和个性化的折扣,这是基于可自前端获得的运营效率。物联网也打消了零售公司在安全方面的顾虑。

解决方案的沿用是第一大问题

在零售业领域,由于零售行业产业链环节较多,因而物联网与传统零售行业进的融合无法一蹴而就,许多企业仍在继续沿用传统的零售行业解决方案。此外,引入物联网带来的便利有时并不能直接解决传统零售行业中现存的问题也成为了零售物联网全面应用路径上的一大挑战。

以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13359996.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-21
下一篇 2023-07-21

发表评论

登录后才能评论

评论列表(0条)

保存