请问边缘计算什么意思?

请问边缘计算什么意思?,第1张

边缘计算指的是靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台。这些物或数据源头的一侧搭载着融合网络、计算、存储、 应用核心能力的边缘计算平台,为终端用户提供实时、动态和智能的服务计算

举个最简单的例子:在焊接机器人焊接两个钢制部件时,焊点如何选择?是偏左一点儿还是偏右一点儿,是偏上一点儿还是偏下一点儿?虽然冲压出来的钢板都是统一标准出来的,但是两个部件结合时难免会有细微差别,通过可视化观察以及边缘计算,机器人可以自己判断最优焊点的位置,将两个部件焊接牢固。每次焊接的数据通过网络上传至云端储存,用以机器学习。如果没有边缘计算,都通过云计算来判断焊点位置,生产效率会降低,同时焊点也可能千篇一律,有些部件可能正好赶上并不是最优的焊点位置,给焊接上了。

今年6月初,工信部宣布我国5G已经具备商用基础,正式发放5G商用牌照。5G发展的脚步越来越快,将能带动很多新兴行业的发展,创造上万亿经济效益、千万个就业机会。  边缘计算领域就是其中一方面。

边缘计算,大家都不陌生。早在2013年,边缘计算伴随着4G网络的铺设以及商用化进程被提出和展开,在5G研究初期移动边缘计算(MEC)就被列入5G系统网络重构的一部分,一度被誉为5G时代的下一个“风口”。

随着智能化设备的深入发展,越来越多的设备联网,越来越多的数据产生,海量数据分析与储存对网络带宽提出了巨大的挑战,而边缘计算就是为了解决这一问题。

目前,边缘计算在智能网联车和自动驾驶、虚拟现实、工业物联网、智能家居以及智慧城市领域均已有应用。

下面我们根据边缘计算的应用场景需求,结合飞凌嵌入式 LS1043A 系列OK1043A-C主板,来探讨下  边缘计算网关  的应用。
1、海量数据分析,边缘计算能力

边缘计算,是在终端设备附近靠近数据源的一侧进行的本地计算分析。终端设备会产生大量数据,这些数据有些是有价值的,有些是不需要进行分析的,通过在边缘设备上执行数据分析,实时让设备做出直接反应,同时将设备的大量状态数据进行过滤和优化,将有价值的数据再上传到云端,减少网络流量压力。

这就要求边缘计算网关,具备强大的数据处理能力,恩智浦推出的 面向智能边缘节点的能效最佳64位平台LS1043A,飞凌嵌入式基于LS1043A四核处理器设计 FET1043A-C核心板 ,完全满足边缘计算能力的需求,CPU内置面向硬件增强虚拟化的ARM SMMU,核心板主频16GHz,ARM Cortex-A53 架构,是一款价格适中,高性能、高能效的产品。
2、多场景应用,超强兼容性 

边缘计算网关的应用场景越来越丰富,如工业物联网、智能家居以及智慧城市等行业的应用,有可能需要接不同类型或者接口的传感器,要求网关有很好的接口兼容性,还要求网关能兼容主流的设备和协议,便于企业低成本替换设备等。

以 OK1043A-C /FET1043A-C主板为例,其兼容性体现在以下几方面:

❶ 接口丰富多样

7路原生网口,2路USB30,1路miniPCIe,2路串口,满足各种行业需求。

❷  通信方式多样(可扩展)

支持4G、ZigBee或Lora等通信方式,适用于多种应用场景。

❷ 支持Ubuntu系统,便于客户二次开发

OK1043A-C支持市面上嵌入式设备主流的Ubuntu系统中用户的应用程序,无需交叉编译即可直接运行在此主板上,支持丰富的第三方应用和插件,如 docker 、DPDK、LXC、内网穿透等,从而提高用户软件开发的效率。
3、庞大数据量接入,高性能网络功能 

在很多应用场景中,边缘设备产生庞大的数据量要接入 边缘计算网关 ,从而要求边缘计算网关具备强劲的网络性能,拿飞凌LS系列OK1043A-C来说,网口支持1个10Gbps和6个1000Mbps。且OK1043A-C底板做了兼容性设计,可接LS1046A系列FET1046A-C核心板,使用光模块,保证更高的传输速率,提高响应速度。

4、工业级品质,应对复杂环境 

在工业物联网,智能交通等行业,必须保证边缘设备的质量和稳定性,以保证边缘计算更好的服务。 FET1043A-C核心板 采用12层PCB设计,核心板和底板采用高速COMExpress板对板连接器,传输速率可达10GHz,为高速功能接口引出提供保障。主板温度适用于-40℃ ~+80℃ 宽温。

5、网络信息安全有保证 

网络安全性一直以来都是物联网行业至关重要的话题,也将是一项长期的任务挑战。IoT的每个节点,从终端设备、边缘计算、网络,再到云计算,都要考虑安全处理。 LS1043A  的 QorIQLS1 系列都内置安全引擎,确保信息安全可靠。

5G商用化伊始,边缘计算机遇与挑战并行,市场需求的不断提高将会促进边缘计算设备的逐步提升,让我们拭目以待,迎接新的物联网时代。

根据咨询公司STL Partners的研究发现,边缘计算能够在许多场景大展身手,这里选择了以下9个重要的应用场景:
1、自主汽车
卡车车队的自动组队可能是自动车辆的首批使用案例之一。在这里,一群卡车在车队中彼此紧跟着行驶,节省了燃料成本,减少了拥堵。有了边缘计算,除了前面的卡车,所有卡车都将不再需要司机,因为卡车将能够以超低延迟相互通信。
2、油气行业资产的远程监控
石油和天然气的失败可能是灾难性的。因此,他们的资产需要仔细监控。
然而,石油和天然气工厂往往位于偏远地区。边缘计算使得实时分析与处理更接近资产,这意味着更少地依赖于与集中式云的高质量连接。
3、智能电网
边缘计算将成为更广泛采用智能电网的核心技术,有助于企业更好地管理其能源消耗。
连接到工厂、工厂和办公室边缘平台的传感器和物联网设备正在被用于实时监测能源使用并分析其消耗。有了实时可见性,企业和能源公司就可以达成新的交易,例如在电力需求的非高峰时段运行大功率机械。这可以增加企业对绿色能源,如风能的消耗。
4、预测性维护
制造商希望能够在故障发生之前分析和检测生产线的变化。
边缘计算有助于使数据的处理和存储更接近设备。这使物联网传感器能够以低延迟监控机器健康状况,并实时执行分析。
5、住院病人监护
医疗保健包含几个优势机会。目前,监测设备,如血糖监测仪、健康工具和其他传感器等,要么未连接,要么需要将来自设备的大量未处理数据存储在第三方云上。这给医疗保健提供者带来了安全问题。
医院网站上的边缘可以在本地处理数据,以保护数据隐私。边缘计算还可以向从业者及时通知患者的异常趋势或行为。
6、云游戏
云游戏是一种新型的游戏,它可以将游戏的实时内容直接传输到设备上,这种游戏高度依赖于延迟。
云游戏公司正在寻找尽可能接近玩家的边缘服务器,以减少延迟,提供完全响应和沉浸式游戏体验。
7、内容交付
通过在边缘缓存内容,如音乐、视频流、网页等,可以极大地改善内容传播。延迟可以显著降低。内容提供商正在寻求更广泛的分发CDN,从而根据用户流量需求保证网络的灵活性和定制性。
8、交通管理
边缘计算可以使城市交通管理更加有效。这方面的例子包括在需求波动的情况下优化公交频率,管理额外车道的开启和关闭,以及未来管理自动驾驶汽车流量。
通过边缘计算,使处理和存储距离智能家居更近,减少了回程和往返时间,并在边缘处理敏感信息。例如,亚马逊的Alexa等语音助手设备的响应时间会快得多。
有了边缘计算,就不需要将大量的流量数据传输到集中式云,从而降低了带宽和延迟的成本。
9、智能家居
智能家庭依赖于物联网设备从房子周围收集和处理数据。通常,这些数据被发送到一个中央远程服务器,在那里进行处理和存储。然而,这种现有体系结构存在回程成本、延迟和安全性方面的问题。
通过边缘计算,使处理和存储距离智能家居更近,减少了往返时间,并在边缘处理敏感信息。
这些只是边缘计算跨多个行业支持的许多用例中的一小部分。以谐云边缘计算应用实例来说,通信领域,谐云为行业巨头某在线服务公司业务场景定制开发、打造了云边协同平台,助力其轻松应对流量洪峰;交通领域,联合上汽集团商用车技术中心打造了“基于容器的下一代车云协同架构”,是汽车行业的首款“云、边、端”一体化架构,可实现百万级车联网大规模接入;为某跨海大桥打造了一体化协同的产品,积累了丰富的“边-端”设备协议对接经验,交付了行业顶尖的“软硬一体化”的整体解决方案。
其中,某在线服务公司和上汽集团案例分别荣获《2020年分布式云与云边协同十佳实践案例》奖项和《2021年分布式云与云边协同十佳实践案例》奖项。旗下边缘计算产品通过“2021云边协同类能力评估”、“边缘一体机、可信物联网云平台(通用/安全要求)”多项能力评估,获浙江CCF2021优秀产品奖,在业内拥有极佳口碑,并获得行业权威认可。
目前,谐云边缘计算已实践于分布式云、物联网、车云协同、边缘智能金融等多场景,为边缘计算领域树立了实践标杆和经典案例。并在一些典型行业如通信、交通、金融、军工等多个行业领域中得到大规模的落地验证。

经过长时间的积累,边缘计算终于迎来了瓜熟蒂落的时刻。随着底层技术的进步和应用的不断丰富,国内外运营商和产业企业均进入到MEC商用落地阶段。进入2019年,国内三大运营商开展了积极的边缘计算试点和部署工作。例如,中国移动发布边缘计算“Pioneer300”先锋行动;中国电信打造边缘计算开放平台ECOP,构建边缘云网融合的网络服务平台及应用使能环境;中国联通展示业界首个“MEC智慧水利”案例。

运营商和企业特点各异

进入2019年以来,边缘计算呈现出了突飞猛进的发展势头,那么边缘计算何时将进入大规模部署阶段?

李开认为,要解答上述问题,首先需要理清边缘计算部署的位置。九州云认为,边缘计算是一个业务驱动的技术,失去了业务驱动,边缘也就失去了意义,因此需要解答的第一个核心问题是边缘计算的驱动力从何而来?

在李开看来,边缘计算主要有运营商和企业两大驱动来源,其中前者来自于对5G场景的落地,后者来自于自身借助5G提升的落地,它们的差别如下。

第一,前者是必然要推动的,后者是可以选择的。第二,前者的边缘架构是相对聚焦的,而且有ETSI MEC标准等可以参考,有StarlingX、Tacker、Airship等开源框架作为起点;后者是相对长尾的,要跟随业务场景摸索,开源框架作为起点只能解决平台问题,不能解决应用问题。第三,前者是从上而下的布局,后者是自下而上的驱动。第四,前者覆盖所有边缘应用,注重边缘分发平台的打造甚于单个应用场景的优化;后者注重实际单个应用的落地,更加能够轻装上阵。第五,前者的时间能够降维并为企业边缘架构所复用,后者的实践无法升级成为前者的架构。

由于运营商市场和企业市场特点相异,因此其进入大规模部署阶段的时间点也不会相同。

李开表示,运营商边缘计算的大规模部署与5G息息相关。受5G牌照、技术、采购和场景选择等多种因素影响,各大运营商的时间点各不相同,但是边缘平台肯定优先于5G至少1年进行试点和局部部署。“这个时间点大概会在2019年下半年和2020上半年到来。”李开认为。

就企业市场而言,其受零售、物流、医疗等企业需求的推动,虽然现在基于4G的边缘网络相较于5G在边缘适配上有一定的天然劣势,但是作为试点却是在一定条件下可以实现的。李开认为,企业的边缘框架和运营商框架相类似,只是在网络延时等条件上有一定折扣,在应用丰富程度上有一定收敛,在空间覆盖上相对局限,但在与企业内设备通信更加复杂。“即使现在企业有独自实现边缘框架的可能性,但是在边缘网络尚不规模具备、需求还需要磨合的情况下,可能要等到2020年下半年才真正具备大规模部署的能力。”李开认为。

物联网成边缘计算最强劲驱动力

物联网是边缘计算的主要应用场景,也是驱动边缘计算的主要动力所在。正因为如此,人们往往把边缘计算和物联网混在一起,但实际上两者虽有联系却并非完全重叠。

在李开看来,物联网和边缘计算有相同之处。例如,海量设备数据的导入可能导致数据爆炸问题需要解决;海量设备所在的物理世界需要在数字世界产生一个“数字孪生(Digital Twins)”,如IoT Shadow、VR对真实世界的复原、自动驾驶对驾驶环境的模拟等,用来模拟物理世界的运行模式。

李开表示,边缘计算和物联网的不同之处也很明显:第一,物联网产生的数据爆炸不一定会产生海量数据,如NB-IoT和LoRa也可以适配物联网,而边缘的主要能力是海量数据的传输;第二,物联网不一定需要低延时,而边缘计算必然强调低延时;第三,物联网大部分基于Internet(核心网),而边缘计算是独立于Internet(核心网)的网络切片,边缘网络安全性更高;第四,物联网未必产生数字视觉,而数字视觉造成的数据则是边缘的一个核心能力。

因此在李开看来,边缘网络落地的行业必然是在和“物”打交道的场景中,同时具备海量数据、低延时、高安全等需求的场景,如工业生产执行系统、工业缺陷识别系统、自动驾驶、AR/VR、远程医疗等。李开表示,九州云所接触到的客户则主要集中在工业制造领域,他们对于工业生产执行系统、工业缺陷识别系统的需求比较强烈。

开放架构加速边缘计算落地

在边缘计算落地过程中,运营商侧重于解决平台问题,打造边缘应用的承载商店和网络,因此非常重视平台的打造和开放。

李开表示,多种开放框架可以支持边缘平台的打造,如StarlingX(OpenStack + K8S)支持边缘基础架构(Edge-IaaS),Tacker、Airship等支持边缘编排(Edge MANO)等,基于这些技术可以打造符合ETSI MEC参考架构的边缘管理平台。九州云在这几个领域都积极参与,是StarlingX/Airship的中国发起单位之一,并在StarlingX拥有全球技术委员会的席位,在Tacker等编排技术上,九州云是全球第一的上有源码贡献厂商。

李开认为,开放边缘平台能力给垂直行业企业,必将产生很好的商用效果。因为开放架构有利于自主的边缘核心能力,提升竞争力。在边缘计算领域,运营商在“硬管道”(边缘基础网络)上具备无可替代的优势,由于边缘网络并不暴露在Internet上,这一优势无法被互联网企业在OTT方面利用,边缘为运营商造就了一个可以直接将触角延伸到最终用户,并重新发现价值的能力。而边缘平台则是“软管道”,运营商必然需要掌控核心能力,基于开放架构而不是商业架构,为运营商带来更好的控制力,加速平台的成形。

此外,开放架构有利于更好地复用运营商原有技术积累,加速落地边缘的编排、边缘云的优化、边缘接口的标准化等技术。事实上运营商在已经完成的NFV架构改造中已经积累了很多,如基于TOSCA的网元编排,适配OSS的接口对接,基于GPU、DPDK的性能加速等,运营商都是基于OpenStack的架构进行优化的,因此在边缘领域坚持开放架构,有利于运营商技术上的继承和复用,加速落地。

切忌“为了边缘而边缘”

边缘计算目前已经到了规模应用的前夕,而要实现规模部署,李开认为边缘计算还需要克服如下挑战:第一,边缘的部署位置,以及与边缘VNF/PNF的整合;第二,边缘机房的改造(直流、空间、制冷)、容量估算(基站接入数、带宽)和安全防护升级;第三,边缘的高可用如何解决;第四,边缘的接入模式(专线、LTE、IOT)和终端的位置(以企业为单一终端还是以设备为单一终端);第五,边缘运维模式和现有网络运维、业务运维、云运维模式的整合,云边协同如何落地。

对于落地垂直行业,李开认为前景虽然明朗,但是也存在一些担忧,主要是“为了边缘而边缘”,即没有商业驱动、只是为了和热点结合引入的边缘计算。“技术问题其实都能够通过积累解决,应用刚需是无法通过技术刚需创造的。”李开认为。而要解决这些担忧,则需要审慎识别客户需求,即是否与“物”打交道的场景,是否具备海量数据、低延时、高安全等需求的场景。

此外,安全也是运营商边缘的优势之一,边缘网络通过网络切片模式实现,是不暴露在互联网上的网络,相对来说更加安全,当然边缘网络自身的安全防护也需要加强,这个模式与核心网的安全加固在技术上有相同之处,新的威胁是针对边缘应用的访问模式,对边缘机房(汇聚或者接入)安全防护能力的升级。

九州云:边缘计算弄潮儿

李开介绍,九州云成立于2012年,是中国第一家从事OpenStack和相关开源服务的专业公司。作为边缘计算的积极探路者,九州云在边缘计算领域积极布局。九州云为运营商打造符合ETSI MEC标准规范的、基于开放架构的边缘平台,九州云在2018年6月成为“中国联通边缘生态合作伙伴”,在2018年10月成为“中国移动边缘开放实验室”的成员,面对运营商客户,九州云主要提供全面解决方案和服务,主要涵盖“边缘应用调度管理平台”“边缘基础架构平台”两大领域。

李开表示,九州云对于边缘计算的商业模式 探索 ,主要集中在工业领域,依托开放框架、低延时边缘网络、大数据处理能力,为客户提供工业数字孪生(Digital Twins)能力,客户包含西格数据、海德控制、格力电器(和中国联通合作)等工业领域客户,其“工业智能管理边缘云平台”获得了2018年度制造业信息化优秀智能制造解决推荐方案,“基于OpenStack的刀具检测于寿命预测管理边缘计算平台”也获得了中国自动化学会“CAA智慧系统创新解决方案”等荣誉。

TG452边缘计算网关拥有强劲的边缘计算能力,分担部署在云端的计算资源,在物联网边缘节点实现数据优化、实时响应、敏捷连接、模型分析等业务,使AI时代下的数字化物联网更进一步。

边缘计算网关功能

1、具备超强边缘计算能力

如何让数据能够低成本且高效地传输到云或者远程终端,意义重大。

而具备了超强边缘计算能力的物联网网关,通过数据处理权限的下放,就近处理。不需要担心远程通信传输不畅通的问题,与普通物联网网关相关有着巨大的功能优势。

2、兼容多平台接入及设备主流协议

支持包括阿里云/华为云/微软/亚马逊/施耐德/西门子等平台接入;兼容多种设备主流工业实时以太网协议和工业总线协议,如Modbus tcp/rtu、profinet、 profibus-dp、opc ua等协议。

个人认为物联网主要价值在于:
1、使得各类信息、咨询可以更容易的被获取
2、大量信息的集合能够更容易的产生衍生价值
3、将一定的人力资源从繁杂的信息数据采集和处理中解放出来、
4、提高生活、工作、学习等各方面的便捷性,提高人的幸福感

作为新兴技术趋势的佼佼者,边缘计算正在成为促进行业数字化转型的重要抓手,在智能化改造上起到重要作用。
“数字新基建”主要围绕着ABCD四方面发展,A是人工智能、B是区块链、C是云、D是大数据,随着5G的快速推进,给ABCD插上翅膀,算力的不断下沉,将会涌现很多有趣的垂直行业应用场景,为边缘端更好实现技术赋能提供了价值。
以当前比较热门的自动驾驶来说,同样是边缘计算最重要的应用场景之一。在自动驾驶场景中,车辆需要做到比驾驶员更快的响应决策速度,也就是说最多只有零点几毫秒时间,同时还要能够自动感知到行车过程中周围车辆、行人、甚至整条路况的实时信息。如果按传统以云中心集中计算为主的决策架构,这对于要做到和人一样反应的自动驾驶来说时间太长了,所以如果没有边缘计算,如果数据的感知处理、控制的决策不能在车辆上本地进行,自动驾驶就会成为空中楼阁。
通过边缘计算的应用,以车辆本身的边缘计算,以及车路协同形式,在道路两旁会部署一些小型智能服务器,就近接收来自周围车辆的信息流,迅速作出响应和决策,同时这些小型的智能服务器也能接收来自云中心下达的控制指令,从而达到车路协同要求。未来甚至红绿灯可能会消失,因为道路知道周围车辆的速度、距离等信息,能够实时对周围车辆发出控制指令,车辆也能够根据来自道路的消息,以及车辆自身的边缘计算实时做出决策,整个过程将实现非常高效的协同。
目前许多智能化的改造,边缘计算已经能够积极的应用在许多场景之上,例如智能驾驶、智能工厂、智能电网、智能家居、智能建筑,很多都是边缘计算的场景。
再举例来说,电网有很多高压线、变电箱,人力的运维成本太大、危险系数也很高,传统的故障巡检机制网络传输带宽消耗大、故障告警处理不实时、而且电力系统数据本身关系到国计民生,数据传输过程中的安全性极其重要。
落地边缘计算之后,借助于边缘智能技术,可以在设备边缘侧几乎准实时地自动检测出问题出现的具体位置,比方说在配电房内安装边缘计算装置,布置AI模型,边缘计算装置连接配电房里面所有的电力设备,实时采集每一个设备的状态,利用高清夜视摄像头,还可以对烟雾、起火进行实时AI推理、故障告警和处理,效率能够得到极大的提升,同时由于大部分数据都在边缘侧本地处理,无需全部传输上报至云端集中处理,因而极大降低了网络传输流量、减少了数据在传输过程中的暴露面,数据安全性也自然得到了提升。

边缘计算的特点包括:
1、可以提供更快的响应时间,因为数据不需要从中央位置传输到边缘;
2、可以减少存储和带宽成本,因为只需要将少量数据传送到中央位置;
3、可以改善安全性,因为数据不会通过公用网络进行传输。
4)、可以大大减少对云服务的依赖。
5)、可以在物理位置上处理和分析数据。
6)、可以带来新的应用场景如物联网、机器人、无人机、工业40和连接式自动驾驶汽车。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13362912.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-22
下一篇 2023-07-22

发表评论

登录后才能评论

评论列表(0条)

保存