很不错。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量。
技术标准的统一与协调
传统互联网的标准并不适合物联网。物联网感知层的数据多源异构,不同的设备有不同的接口,不同的技术标准;网络层、应用层也由于使用的网络类型不同、行业的应用方向不同而存在不同的网络协议和体系结构。建立的统一的物联网体系架构,统一的技术标准是物联网正在面对的难题。
物联网就业前景很好,物联网产业具有产业链长、涉及多个产业群的特点,其应用范围几乎覆盖了各行各业。
物联网专业是教育部允许高校增设新专业后,高校申请最多的学校,这也说明了国家对物联网经济的重视和人才培养的迫切性。物联网的产业规模比互联网产业大20倍以上,而物联网技术领域需要的人才每年也将在百万人的量级。
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。
物联网产生大数据,大数据助力物联网大数据时代已经来临。传感器、RFID等的大量应用,电脑、摄像机等设备和智能手机、平板电脑、可穿戴设备等移动终端的迅速普及,促使全球数字信息总量的急剧增长。物联网是大数据的重要来源,随着物联网在各行各业的推广应用,每秒钟物联网上都会产生海量数据。
数据是资源、财富。大数据分析已成为商业的关键元素,基于数据的分析、监控、信息服务日趋普遍。在各行各业中,数据驱动的企业越来越多,他们须实时吸收数据并对之进行分析,形成正确的判断和决策。大数据正成为IT行业全新的制高点,而基于应用和服务的物联网将推动大数据的更广泛运用。
由于物联网数据具有非结构化、碎片化、时空域等特性,需要新型的数据存储和处理技术。而大数据技术可支持物联网上海量数据的更深应用。物联网帮助收集来自感知层、传输层、平台层、应用层的众多数据,然后将这些海量数据传送到云计算平台进行分析加工。物联网产生的大数据处理过程可以归结为数据采集、数据存储和数据分析三个基本步骤。数据采集和存储是基本功能,而大数据时代真正的价值蕴含在数据分析中。物联网数据分析的挑战还在于将新的物联网数据和已有的数据库整合。
物联网上的大数据应用空间广阔,大数据和物联网结合充满无限可能。随着物联网、互联网、移动互联网、智能终端、大屏显示系统、云计算平台等的联合应用,物联网上的大数据可帮助人们建立智能监控模型、智能分析模型、智能决策模型等应用,深刻改变人们的生活。
智慧城市是物联网最大的应用领域,而智慧农业、智能家居、智慧物流、智能安防中的视频信息处理、智慧交通中的交通实时诱导、智慧环保中的环境监测等物联网领域都是大数据应用的“用武之地”。如:在环境监测方面,传感器借助物联网传递信息到互联网平台或移动互联网平台,实时监控环境变化。通过环境监控模型,对收集到的海量环境数据进行分析,发现环境指标变化的异常点,帮助环保部门提前预测某地环境的变化情况,对环境指标偏离正常指标值的,提前发出环境污染预警。而智能制造或“工业互联网”更是未来大数据和物联网美妙结合的经典案例。在行业应用方面,大数据和物联网的结合也会“擦出火花”。如:邮政服务可通过大数据和物联网转型为“邮政物联网”。邮政网络可配备低成本传感器,极大地增强邮政运营商收集有价值数据的能力。这个庞大的新数据来源可帮助邮政运营商提升运营能力,改善客户服务,创造新产品和服务,并为更有效率的决策提供支持。
物联网的价值在于其数据。物联网带来了突破性的技术进步,但管理大数据的问题也变得更加突出,需相关信息通信技术鼎力支撑。如:数据产生、捕捉、传递和分析,需快捷、稳定、可靠的广域网络,3G、4G、WiFi等无线通信技术应不断优化,以支持物联网及各传感器节点感知信息能力、传输能力、信息处理和存储能力等的全面提升。
物联网产生大数据,大数据助力物联网。由物联网引发的大数据潮流还将助推云计算等信息通信新技术的融合发展。
我们在了解人工智能技术的时候,对于深度学习的概念进行了一次普及,今天我们就一起来学习一下深度学习对于物联网的发展都有哪些影响作用。下面北京电脑培训就开始今天的主要内容吧。
技术
在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。由于商业和生活质量提升方面的诉求,应用物联网(IoT)技术对大数据流进行分析是十分有价值的研究方向。这篇论文对于使用深度学习来改进IoT领域的数据分析和学习方法进行了详细的综述。从机器学习视角,作者将处理IoT数据的方法分为IoT大数据分析和IoT流数据分析。论文对目前不同的深度学习方法进行了总结,并详细讨论了使用深度学习方法对IoT数据进行分析的优势,以及未来面临的挑战。
在本系列文章中,已介绍了深度学习和长短期记忆(LSTM)网络,展示了如何生成用于异常检测的数据,还介绍了如何使用Deeplearning4j工具包。本篇文章中,将介绍开源机器学习系统ApacheSystemML如何通过动态地优化执行并利用ApacheSpark作为运行时引擎,帮助执行线性代数运算。并展示了在时序传感器数据(或任何类型的一般序列数据)上,即使非常简单的单层LSTM网络的性能也优于先进的异常检测算法。
GoogleAssistant和其他自然语言理解平台正在推动用户如何使用他们的技术。无论是执行器诸如设置计时器之类的简单任务,还是进行更复杂的任务(例如Google智能助理调整恒温器),您都可以参与其中。在这篇文章中,逐步介绍了如何构建自己的助手应用程序,通过简单地要求Google来控制AndroidThings设备来浇灌植物。
开源
tinyweb是一个用于在运行有MicroPython的ESP8266/ESP32等微型设备之上的简单轻便的>
Mynewt是一款适用于微型嵌入式设备的组件化开源 *** 作系统。ApacheMynewt使用Newt构建和包管理系统,它允许开发者仅选择所需的组件来构建 *** 作系统。其目标是使功耗和成本成为驱动因素的微控制器环境的应用开发变得容易。Mynewt提供开源蓝牙50协议栈和嵌入式中间件、闪存文件系统、网络堆栈、引导程序、FATFS、引导程序、统计和记录基础设施等的支持。
AngularIotDashboard是一个基于Angular4的物联网领域的仪表板。它是一个适用于任何浏览器的实时兼容仪表板,其目标是成为智能家居,智能办公室和工业自动化的d性前端。拥有许多可重用组件,开发者可以基于AngularIoTDashboard启发和实施自己版本的托管物联网仪表板。
硬件
FemtoUSB是一个基于Atmel的ARMCortexM0+产品ATSAMD21E18A的开源ARM开发板。其被设计成对那些对ARM设计感兴趣的人的基础起点,特别那些准备从AVR8位硬件转换到功能非常强大的ARM32位工具。其从电路板设计,原理图和零件清单完全是开源的,可以让开发者学习设计ARM芯片、编译工具链、ARM芯片的基本的电路图等等的内容。
物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
发展前景十分可观,对网络本身的研究,包括路由算法,分布式算法,大数据,人工智能,神经网络,等等,其实一直都是有这个研究课题的,只是随着接入的东西越来越多,网络越来越庞大,元数据越来越多,使得这些研究被推到台前,曝光率越来越高。
相关信息:
第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。
因此,物联网的定义是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)