Toit 是一种面向对象的物联网编程语言,在 IoT设备上能够实现秒级代码部署(注:如果使用C语言,一个简单的代码更改需要几分钟才能重新部署);同时,Toit也是一种现代的、内存安全的编程语言,集成了先进的编辑器功能,如语法高亮、goto-definitions 、代码自动补全等等。
Toit 编程语言具备以下特征:
Toit的出现是因为有一群软件工程师对IoT开发的现状感到不满,凭借着在Google为Flutter构建V8 JavaScript 引擎和Dart语言的丰富经验,他们开始自己构建适用于IoT的最佳平台。也正是在平台构建过程中,他们意识到必须有一种高效的编程语言来满足物联网的需求。最开始,他们尝试使用了Python和JavaScript,但在微控制器上,这两种语言的速度都不够快。
为了解决性能和健壮性问题,Toit团队开始研究Toit语言,经过测试发现,Toit在 ESP32 上的执行代码速度比 MicroPython 快 30 倍以上,同时学习门槛也很低,Python开发人员在几小时内就可以学会它。
为什么会选择开源Toit?Toit团队表示:“从一开始,我们就明确知道Toit肯定是会在某个时刻开源的,因为所有主流的编程语言都是开源的。开源可以获得充满活力的生态系统,编程语言才能被大规模采用。经过多次迭代和实际环境的应用,Toit语言已经成为微控制器编写强大软件的利器,我们希望更多开发者能够从中受益,因此选择将它开源出来。”
链接:>Python语言通俗易懂、简单易学、容易上手,而且具有丰富的第三方库,是非常不错的选择,应用领域也是非常广泛的,比如说:
1、人工智能:Python是人工智能的首选语言,选择人工智能作为就业方向是理所当然的。
2、大数据:Python在大数据上比java更加具有效率,大数据虽然难学,但是Python可以更好的和大数据进行对接,尤其是大数据分析这个方向。
3、网络爬虫:爬虫是进行数据采集的利器,利用Python可以更快的提升对数据抓取的精准程度和速度。
4、全栈工程师:全栈工程师是指掌握多种技能,并能利用多种技能独立完成产品的人,也叫全端工程师
5、自动化运维:运维工作者对Python的需求也很大;
6、自动化测试:Python十分高效,目前做自动化测试的大部分的工作者都需要学习Python帮助提高测试效率。用Python测试也可以说是测试人员必备的工具了。常见的编程方向有:Java开发、PHP开发、Python、大数据开发、unity游戏开发等不知道你目前有没有计算机基础,现在比较火的Python+人工智能、大数据、Java三者相比而,Python入门更容易一些,适合零基础学习,如果有一定的基础可以选择Java作为入门语言!Python是一门简单、易学并且很有前途的编程语言,很多人都对Python感兴趣,但是当学完Python基础用法之后,又会产生迷茫,尤其是自学的人员,不知道接下来的Python学习方向,以及学完之后能干些什么?以下是Python十大应用领域!
1 WEB开发
Python拥有很多免费数据函数库、免费web网页模板系统、以及与web服务器进行交互的库,可以实现web开发,搭建web框架,目前比较有名气的Python web框架为Django。从事该领域应从数据、组件、安全等多领域进行学习,从底层了解其工作原理并可驾驭任何业内主流的Web框架。
2 网络编程
网络编程是Python学习的另一方向,网络编程在生活和开发中无处不在,哪里有通讯就有网络,它可以称为是一切开发的“基石”。对于所有编程开发人员必须要知其然并知其所以然,所以网络部分将从协议、封包、解包等底层进行深入剖析。
3 爬虫开发
在爬虫领域,Python几乎是霸主地位,将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。从事该领域应学习爬虫策略、高性能异步IO、分布式爬虫等,并针对Scrapy框架源码进行深入剖析,从而理解其原理并实现自定义爬虫框架。
4 云计算开发
Python是从事云计算工作需要掌握的一门编程语言,目前很火的云计算框架OpenStack就是由Python开发的,如果想要深入学习并进行二次开发,就需要具备Python的技能。
5 人工智能
MASA和Google早期大量使用Python,为Python积累了丰富的科学运算库,当AI时代来临后,Python从众多编程语言中脱颖而出,各种人工智能算法都基于Python编写,尤其PyTorch之后,Python作为AI时代头牌语言的位置基本确定。
6 自动化运维
Python是一门综合性的语言,能满足绝大部分自动化运维需求,前端和后端都可以做,从事该领域,应从设计层面、框架选择、灵活性、扩展性、故障处理、以及如何优化等层面进行学习。
7 金融分析
金融分析包含金融知识和Python相关模块的学习,学习内容囊括Numpy\Pandas\Scipy数据分析模块等,以及常见金融分析策略如“双均线”、“周规则交易”、“羊驼策略”、“Dual Thrust 交易策略”等。
8 科学运算
Python是一门很适合做科学计算的编程语言,97年开始,NASA就大量使用Python进行各种复杂的科学运算,随着NumPy、SciPy、Matplotlib、Enthought librarys等众多程序库的开发,使得Python越来越适合做科学计算、绘制高质量的2D和3D图像。
9 游戏开发
在网络游戏开发中,Python也有很多应用,相比于Lua or C++,Python比Lua有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,Python非常适合编写1万行以上的项目,而且能够很好的把网游项目的规模控制在10万行代码以内。
10 桌面软件
Python在图形界面开发上很强大,可以用tkinter/PyQT框架开发各种桌面软件!职场人员还是有必要学习前端的,但是这个也分岗位,比如商场的销售人员肯定是不需要的。
对于职场人,日常碰到很多数据,需要进行归类整理,数据分析是可以考虑学习。还有就是日常工作千篇一律的也考虑学习Python,学会用Python来写命令,减少工作量。Python这只小虫子最近随着大数据的兴起可以说是十分的火了。有越来越多的人不敢小觑Python这门语言了。也有更多的人在学习Python。Python为何会有如此大的魅力?为什么从事大数据行业必学Python?这还要从Python这门语言的优点开始讲起。
虽然Python这种语言不如Java、C++这些语言普及,却早在1991年就已经诞生了。它的语法简单清晰,以实用为主,是门十分朴素的语言。同时,它还是编程语言中的“和事佬”,被人戏称为胶水语言。因为它能够将其他语言制作的各种模块很轻松的联结在一起。
如果将Python语言拟人化,它绝对属于“老好人”的那一类,让人容易亲近,人们与它交流并不需要花太多心思。但它却拥有强大的功能。很多语言不能完成的任务,Python都能轻易完成。它几乎可以被用来做任何事情,应用于多个系统和平台。无论是系统 *** 作还是Web开发,抑或是服务器和管理工具、部署、科学建模等,它都能轻松掌握。因此,从事海量数据处理的大数据行业,自然少不了这个“万能工具”。
除此之外,Python这只小虫子还受到了大数据老大哥Google的青睐。Google的很多开发都用到了Python。这使得人们能够找到Python的很多指南和教程。让你学起来更方便,你在使用中可能遇到的很多问题大多数都已经被Google给解决了,并把解决方法发布到了网络平台。
Python还拥有一系列非常优秀的库,这省了你编程中的很多时间。尤其是在人工智能和机器学习领域,这些库的价值体现得更为明显。
不管怎么说,从事大数据工作,少不得要在网络上爬取数据,不用Python爬虫,你还打算用什么呢?
因此,在当前的大数据领域,从事大数据行业必学Python。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
————————————————
版权声明:本文为CSDN博主「duozhishidai」的原创文章,遵循CC 40 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:>
想要成为一名物联网工程师,可以学习以下几个方面:
1、物联网产业与技术导论:全面了解物联网RFID、M2M、传感网、两化融合等技术与应用。
2、C语言程序设计:物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准。
3、Java程序设计:物联网应用层,服务器端集成技术,开放Java技术也是必修课,同时需要了解Eclipse,SWT,Flash,HTML5等技术使用。
4、TCP/IP网络与协议:TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能。
5、嵌入式系统技术:嵌入式系统是物联网感知层和通讯层重要技术。
6、无线传感网络:学习各种无线RF通讯技术与标准,Zigbee,蓝牙,WiFi,GPRS,CDMA,3G,4G,5G等。
扩展资料
物联网的基本特征
1、整体感知
可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
2、可靠传输
通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
3、智能处理
使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。
语言只是一种与系统的交互工具,要做一个应用系统,自然是系统涉及到的相关知识都要学习,具体到你的问题,Python本身就不用说了,树莓派的开发应用基础、物联网的组网基础及相关协议、RFID及各种传感器原理等等。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)