基本学制:三年 | 招生对象: | 学历:中专 | 专业代码:710102
培养目标
培养目标
本专业培养德智体美劳全面发展,掌握扎实的科学文化基础和传感器应用、网络通 信、综合布线、物联网项目工程实施等知识,具备物联网生产施工、物联网技术服务、 系统运维等能力,具有工匠精神和信息素养,能够从事物联网设备安装与调试、物联网 系统集成实施、物联网系统监控、物联网产品制造与检测、售后技术支持等工作的技术 技能人才。
职业能力要求
职业能力要求
1 具有物联网产品装配、焊接、检测与调试的能力; 2 具有感知层设备质量检测、典型传感网安装组建与调试的能力; 3 具有物联网项目施工图识读、物联网设备安装与调试的能力; 4 具有物联网平台、数据库及应用程序安装、配置与运行维护的能力; 5 具有物联网样机试制、数据采集与标注、应用程序辅助开发的能力; 6 具有物联网系统应用程序安装、使用、维护、系统监控与故障维修的能力; 7 具有初步将 5G、人工智能等现代信息技术应用于物联网领域的能力; 8 具有终身学习和可持续发展的能力。
专业教学主要内容
专业教学主要内容
专业基础课程:电工电子技术与技能、计算机组装与维修、计算机网络技术基础、 程序设计基础。 专业核心课程:单片机技术及应用、数据库技术及应用、传感器与传感网技术应用、 网络综合布线技术、物联网技术及应用、物联网设备安装与调试、物联网运维与服务。 实习实训:对接真实职业场景或工作情境,在校内外进行物联网综合布线、物联网 电子产品制作、物联网设备安装与调试、物联网工程实施等实训。在物联网系统集成企 业、物联网产品制造企业等单位进行岗位实习。
专业(技能)方向
专业(技能)方向
职业资格证书举例
职业资格证书举例
职业技能等级证书:物联网智能家居系统集成和应用、物联网安装调试与运维、物 联网工程实施与运维
继续学习专业举例
接续高职专科专业举例:物联网应用技术、工业互联网技术 接续高职本科专业举例:物联网工程技术、工业互联网技术 接续普通本科专业举例:物联网工程、计算机科学与技术
就业方向
就业方向
面向物联网安装调试员等职业,物联网设备安装与调试、物联网系统运行与维护、 物联网系统监控、物联网产品制造与测试、物联网项目辅助开发和售后技术支持等岗位 (群)。
对应职业(岗位)
对应职业(岗位)
其他信息:主要学物联网概论、物联网硬件基础、无线传感网应用技术、RFID 应用技术、M2M 应用技术、物联网应用软件开发、Android 移动开发等。物联网应用技术培养具有从事WSN、RFID系统、局域网、安防监控系统等工程设计、施工、安装、调试、维护等工作能力的高端技能型人才。 物联网软件、标准、与中间件技术 ,《中间件技术原理与应用》,清华大学出版社,《物联网:技术、应用、标准和商业模式》,电子工业出版社,等教材。物联网产业发展的关键在于应用,软件是灵魂,中间件是产业化的基石,需要学习和了解,尤其是对毕业后有志于物联网技术发展的学生。 物联网的应用遍及各个领域,如:智能交通、公共安全、环境保护、智能检测等,涉及人类生产生活的方方面面。据有关预测,物联网全面应用的业务量规模将达到现有人与人之间通信量的30倍。 物联网专业主要就业于与物联网相关的企业、行业,从事物联网的通信架构、网络协议和标准、信息安全等的设计、开发、管理与维护,就业口径广,需求量十分大。学习物联网技术,是围绕这些发展方向来的。找准自己的方向,对接下来的学习会有很大的帮助!
物联网其实到目前为止也没有一个精确的定义,一般来说,我们认为物联网是传统的互联网向物理世界的一个延伸。通过连接物理世界,使得网络能够更好的为人类服务。物联网能够广泛用在生产和生活的各个方面,产生了如智慧家庭、智慧城市、智慧农业、智慧医疗、智慧环境等一系列相关的应用场景。涉及的主要技术包括以下几种:
1、传感器网络技术
传感器网络实现了数据的采集、处理和传输三种功能。它与通信技术和计算机技术共同构成信息技术的三大支柱。传感器网络是由各种各样的传感器节点所组成,用以进行信息的收集、传输和处理的网络系统。
作为物联网感知和获取数据信息的重要手段,传感器网络在物联网中发挥着极为重要的作用。无线传感器网络是一项通过无线通信技术把数以万计的传感器节点以自由式进行组织与结合进而形成的网络形式。
无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围;传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。
构成传感器节点的单元分别为:数据采集单元、数据传输单元、数据处理单元以及能量供应单元。
(1) 数据采集单元,通常都是采集监测区域内的信息并加以转换,比如温湿度、光照度等;
(2) 数据传输单元则主要以无线通信和交流信息以及发送接收那些采集进来的数据信息为主;
(3) 数据处理单元通常处理的是全部节点的路由协议和管理任务以及定位装置等;能量供应单元为缩减传感器节点占据的面积,会选择微型电池的构成形式。
2、RFID技术
射频识别(Radio Frequency Identification, RFID),是一种利用无线电波进行信息交换与存储的技术,通过无线射频来对电子标签进行读写,以达到自动识别目标以及信息交换目的。
RFID系统通常由读写器、电子标签与数据管理系统组成,其工作原理一般是由读写器在一定范围内发送无线电射频信号,当电子标签接收到读写器所发射的无线电信号时,就会利用感应电流所获得的能量(无源RFID),或者主动发送无线电信号(有源RFID)将标签芯片内所存储的产品信息发送出去,读写器接收到电子标签所发射的信息并解码后,再将这些数据信息反馈至数据管理系统进行数据处理。
RFID系统主要由标签、阅读器和天线三部分组成。一般由阅读器收集到的数据信息传送到后台系统进行处理。
(1)标签:标签由耦合元件及芯片组成,每个电子标签都具有唯一的电子编码,附着在物体上标识目标对象;每个标签都有一个全球唯一的ID号码——UID(用户身份z明),其在制作标签芯片时存放在ROM中,无法修改,其对物联网的发展有着很重要的影响。
(2)阅读器:阅读器是读取或写入标签信息的设备,可设计为手持式或固定式等多种工作方式。对标签进行识别、读取和写入 *** 作,一般情况下会将收集到的数据信息传送到后台系统,由后台系统处理数据信息。
(3)天线:天线是用来在标签和阅读器之间传递射频信号。射频电路中的天线是联系阅读器和电子标签的桥梁,阅读器发送的射频信号能量,通过天线以电磁波的形式辐射到空间,当电子标签的天线进入该空间时,接收电磁波能量,但只能接收其很小的一部分。
3、嵌入式系统技术
嵌入式系统一般是用户针对特殊需求而定制的,能够被内部计算机控制的设备或系统。嵌入式系统往往结合了计算机技术、通信技术以及自动化技术,使得传统的机电产品智能化,并具有故障诊断、自动报警以及信息传输和远程控制等多种功能,用以实现产品使用与管理的信息化、智能化。
由于嵌入式系统体积小、功能强且成本较低等,使其广泛应用于智能家居、车联网等领域。嵌入式系统的核心由一个或多个微处理器或微控制器组成,这些微处理器或微控制器经过预编程以执行一些任务。嵌入式系统上的软件通常是暂时不变的。嵌入式系统需要与应用紧密结合的,它具有很强的专用性,必须结合实际系统需求进行合理的裁减利用。用先进的计算机技术、半导体技术和电子技术与各行业的具体应用相结合的知识集成系统。
从应用角度可分为通用型嵌入式 *** 作系统和专用型嵌入式 *** 作系统。常见的通用型嵌入式 *** 作系统有Linux、VxWorks、Windows >认知无线网络的频谱感知技术
认知无线电/认知无线网络起源于Joseph Mitola攻读博士期间的研究工作,在其博士论文中,Mitola将认知无线电定义为“the integration of model-based reasoning with software radio technologies”,认为认知无线电是智能计算和无线通信这两个学科交叉融合的产物[1] 。随后,美国的FCC和DARPA分别启动了多项计划,对认知无线电和动态频谱接入问题进行深入研究;欧盟的端到端重配置计划(E2R: End to End Reconfigurability Project)也启动了对认知概念在技术和经济领域等各方面问题的研究。Simon Hakin在2005年发表了关于认知无线电的著名文章“Cognitive radio: brain-empowered wireless communications”[2] ,主要从信号处理和自适应过程的角度对认知无线电技术的框架结构进行了较为完善的分析。此后,许多有名的大学和研究机构也展开了相关技术的研究和实验平台的开发,认知无线电的概念也被扩展为认知无线网络,指利用认知原理来提高各种资源(频谱、功率等)使用效率的无线网络[3] 。在频谱管理部门的带动下,一些标准化组织也先后开展了一系列标准制定工作以推动该技术的发展。目前涉及认知无线电/认知无线网络标准制订的组织和行业联盟主要是美国电气电子工程师学会(IEEE)、国际电信联盟(ITU)和软件无线电论坛(SDR Forum)等。
认知无线网络中,主(授权)用户指那些对某段频谱的使用具有高优先级或合法授权的用户,次级用户是指那些低优先级的用户。次级用户对频谱的使用不得对主用户造成干扰,因此要求其能快速、可靠地感知主用户使用授权频谱的情况。次级用户必须具备认知能力,因而称其为认知用户,在网络结构中则表示为认知节点。认知用户的频谱感知主要包括在某个频段上检测主用户存在与否(主用户信号检测)和估计认知用户对主用户接收机可能造成的附加干扰(干扰温度估计)两个任务[4] 。更进一步的可能要求是频谱感知还应区分主用户信号的种类(空中接口分类)[5] 。目前大部分频谱感知的研究都集中在最重要的主用户信号检测上。
1 频谱感知的基本方法
主用户信号检测的单节点频谱感知基本方法通常分为三类:
第一类为相干检测。如果知道主用户信号的结构特征(如导频、前导或同步消息等),匹配滤波器加门限检测的方法是最优的主用户信号检测方法。相干检测可获得精确的频谱感知结果,但其缺点也很明显,必须知道主用户信号的先验知识,而且当认知无线网络运行在很宽的频段上时,实现许多类型的授权信号的相干检测成本太高,几乎不可实现。
第二类为能量检测。在感兴趣频段上测量某段观测时间内接收信号的总能量,如果能量低于某个设定门限则声明该频段为白空间。与相干检测相比,能量检测需要更长的感知时间以达到同样的感知效果,但低成本、易实现的特性使其受到认知无线网络中频谱感知技术的青睐。
以上基于信号检测技术的两种频谱感知方法,有很好的理论基础[6] ,性能分析已比较完善。
第三类为特征检测[7] 。能量检测的最大缺点是它不能区分接收到的能量是来自主用户信号还是噪声,在低信噪比环境中的频谱感知结果尤其不可靠。在主用户信号的载波频率、调制类型或循环前缀等某些特征已知时,利用信号的期望和自相关函数呈现出来的周期性(循环平稳谱相关特性),可将信号能量与噪声能量区分开来,突破能量检测的瓶颈。文献[8] 还分析实际情况下有限的数据长度对循环谱特征检测的影响。实现复杂度远高于能量检测是制约特征检测在频谱感知中应用的最主要缺点。
此外,2003年底FCC频谱政策工作组提出了干扰温度模型[9] ,意在对无线环境中的干扰源进行量化和管理。干扰温度限提供了特定地理位置在某一感兴趣频段上接收机能够顺利工作的最差环境的特征描述。根据干扰温度模型,认知用户若能确定其对主用户接收机造成的附加干扰量并加以限制,使主用户接收机所受的总干扰(含噪声)不超过干扰温度限,则认知用户可与主用户运行在同一频段上。可以看出,基于主用户信号检测的频谱感知意在避开主用户,而基于干扰温度模型的频谱感知则试图与主用户同时并存于同一个频段,这是两者最大的区别。文献[10] 定义了已知和未知主用户信号参数时干扰温度的理想模型和一般模型,并从通信容量的角度分析了如何来最优地选择认知系统的工作带宽和发送功率。但干扰温度模型存在两个需要解决的难题:其一为在主用户发送信号存在的情况下如何测定其接收机的噪声水平,其二为在主用户接收机位置未知的情况下如何估计认知用户对它可能产生的干扰。降低问题难度的一种可能办法是让主用户系统来辅助认知系统的频谱感知,如文献[11] 中要求主用户接收机在工作过程中持续发送指示信号。另一个需要考虑到的是,认知用户和主用户共存于同一个频段时,认知系统的通信过程中也会受到授权系统的干扰,所以认知系统能获得的通信容量可能非常有限[10] 。
2 协同频谱感知
认知无线网络可通过对多节点感知信息的协同处理来提高频谱感知的效果,这被称为协同(协作、合作)频谱感知。频谱感知性能主要由感知范围、检测时间、检测概率、虚警概率等几个相互关联的指标来衡量,协同频谱感知可利用空间分集增益改善上述指标,解决单节点感知中难以克服的多径深衰落、阴影衰落和隐终端等难题[4] ,同时也可减轻对单个节点感知灵敏度的要求,降低实现成本[12] 。
实现协同频谱感知的方式有两种,即中心式和分布式。
中心式感知:中心单元收集各认知节点的感知信息,负责识别可用频谱,并将频谱可用信息广播给各认知节点或直接控制认知节点的通信参数。文献[13] 中以AP为中心收集、处理各感知节点的硬判决(二进制)结果,通过克服信道衰落效应来提高感知性能,其检测概率和虚警概率的计算在文献[14] 中给出。文献[15] 以主节点(master node)为中心节点合并各感知结果来检测TV信道。文献[16] 则由融合中心(fusion center)根据各认知节点能量检测的结果最终判断主用户在某个频段上的存在与否。
分布式感知:认知节点彼此之间共享感知信息,但独立判断各自的可用频谱。与中心式感知相比,分布式感知的优点是不需要基础结构网络,部署更灵活些。文献[17] 显示一个用户作为另一个用户中继的两用户协同频谱感知可带来35%的捷变增益(所需感知时间减少35%)。文献[18] 进一步将这种分布式感知协议推广到多用户环境中。
无论中心式还是分布式感知,就协同频谱感知的研究内容而言,主要包含以下两个方面:
1)认知节点感知信息的合并处理,即考虑信息融合(fusion)问题。
2)感知信息传递过程的合作,即考虑中继传输问题。物联网关键应用技术有:
1、传感器技术,这也是计算机应用中的关键技术。在目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。
2、RFID标签也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。
3、政府应该加大对产业的投入,这个投入可以不是资金,而是给企业更多的政策,特别是在 *** 作系统、开发工具、IC设计等产业链中高端领域上从政策到资金都要加大投入。在管理上引入重大资金投向问责制,对长期投入资金不能市场化、产业化的项目,定期论证评估,不能达标的关停并转甚至要追究责任。
4、减少盲目引进项目,在嵌入式与物联网的发展中,核心技术坚持鼓励国产化,从资金上、税收上加大力度向自主研发产品倾斜。杜绝盲目引进产业链的中高端技术,特别是不能出现像其他行业一样,重复引进同一个外国品牌多条生产线的状况。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)