极端天气频发!青海西宁暴雨致多处内涝,为何内涝情况如此严重?

极端天气频发!青海西宁暴雨致多处内涝,为何内涝情况如此严重?,第1张

夏天是雨水相对来说比较丰富的一个季节,但是对于很多内陆城市和地区来说并没有出现过非常严重的洪涝灾害,因为这些地区受到天气因素和当地情况的影响,并不会出现非常严重的降雨,但是极端天气却出现在青海西宁等地区,导致这些地区出现了非常严重的降雨天气,甚至导致很多城市出现了严重的内涝。这些地区之所以会出现如此严重的内涝情况,是因为这些地区本来就处于地势相对来说比较低洼地地区,因为当地有很多高山,所以大多数村庄和城市在一些低平的地区,这就为内涝提供了先天条件,一旦出现长时间的强降雨天气就非常容易出现内涝情况,所以青海当地多处出现内涝情况的一些原因就是受到当地地形的一些影响,这种因素也是出现内涝情况的一个主要因素。那么除了地形之外,最主要的一个因素还包括当地对于整个强降雨天气以及内涝情况的处理和解决方案并没有提前准备,因为青海地区属于我国非常内陆的一个地区,基本上不会出现持续强降雨天气,所以青海的各个地区几乎没有任何应对强降雨天气出现内涝的解决方案和解决措施,所以在面对突发情况的时候就有一些不知所措,才会出现如此严重的内涝情况。还有一方面就是天气因素,根据有关信息了解在青海各个地区几乎都出现了超级极端的天气,可以说是降雨量非常的大而且时间非常久,甚至是出现了多次强降雨天气,那么面对这样的天气其实一些解决方法还是有一些勉强,所以在面临这些强降雨的集团前期的时候,不可避免的就会出现严重的那个情况,所以青海所面临的极端天气也是造成了让我如此严重的最主要原因。

经历了互联网、移动互联网,人类正在迈入万物互联、万物智能的世界。5G、IoT、云计算、人工智能成为 社会 关注的对象,数字经济成为政策宣传的重点,各种概念和解释产生,使得当下有很多话题可以讨论。

数字经济背景下,企业竞争最核心的能力是什么。

不同行业发展数据智能的潜力有何不同?

企业如何高效进行物联网应用开发?

企业对云平台的使用体验如何

对于类似问题,阿里云IoT、ICA联盟一直希望与行业人士进行对话。上周,ICA联盟物联网万亿生态伙伴聚合沙龙在杭州举办,活动以“粘合行业碎片,共创IoT基石”为主题,以阿里云IoT云产品为话题,吸引近200名行业人士到场交流。

4位嘉宾依次上台分享

物联网需要化繁为简

物联网产业链很长,覆盖了感知层、网络层、应用层三大层次。它改变了传统的商业运作方式,让商业 社会 变得更加复杂。

首先,物联网让产品变得复杂。增加了传感器、模块等部件,需要进行更多的开发管理。

其次,物联网让需求变得复杂。企业从生产产品变成了提供个性化的服务。

就是这两个变化,让产业体会到很多新的发展痛点。

1 物联网开发过程链路极长,从获客到交付典型过程常常要经历十几个环节。

2 将软件研发、硬件研发、嵌入式研发,云产品的购买,施工/安装/维修费用计算在内,物联网开发成本极高。

3 调查表示目前78%的用户需求为定制化需求,65%的物联网软件需要定制化开发,这导致软件复用性较低。

4 设备联网、用户交互产生海量数据,众多场景亟需数据实时分析、可视化的能力,提升使用效率及用户体验。

新的形势促进了变化的发生,计算力的进步预示着满足更大的信息处理能力,更强的灵活性。

物联网平台在整个产业链中地位,也从当年行业所关注的“要不要上云”,随着企业自身数据资源日渐丰富,应用数据意愿的显著增强,过渡到了“如何高效地上云”。

物联网云平台,由此更直接地承担起IoT产业“基础设施”的角色,为物联网项目的规模化落地减负降压。

阿里云IoT 产品结构

阿里云 IoT 资深产品专家JASON CHEN从各个原子化产品角度,描绘了阿里云IoT的全局样貌。包含物联网 *** 作系统AliOS Things、边缘计算Link Edge、网络管理平台Link WAN、开发平台IoT Studio、物联网设备接入与管理、物联网数据分析、物联网市场Link Market、物联网安全Link Security等功能在内,展现阿里云为各类IoT场景和行业开发者赋能的能力。

将各个基础产品分别阐述,体现出阿里云IoT强化基础设施角色,希望阿里云的产品技术变成合作伙伴解决方案一部分的心态。再次印证阿里云智能总裁张建锋在3月阿里云峰会上所提出的“被集成”口号,阿里云的重要转变已经发生。

以下,我们就将重新认识阿里云IoT云产品。

物模型

阿里云 IoT 技术运营专家薛圆在交流中表示,ICA联盟推出物模型,定义物联网设备模型与属性。通过对任意物联网设备建模,合作伙伴共创设备数据标准模型,确保数据标准的准确性、合理性,实现设备间的互联互通互懂。

类似将拼图碎片整理成更完整的拼图模块,物模型将实现碎片数据结构化、差异模型统一化、烟囱场景联动化、软硬一体标准化的目标,帮助用户缩短开发时间、标准化开发工具。

物联网数据分析

在任何商业活动中,数据都是一种资本,数据分析是可以产生创新收益的手段。

阿里云 IoT 高级产品经理腾春艳在对物联网数据分析产品介绍时表示,阿里云为物联网开发者提供数据分析服务,覆盖了数据存储、清洗、分析及可视化等环节,有效降低数据分析门槛,助力物联网开发。

在空间数据可视化方面,阿里云IoT提供二维、三维空间数据的可视化功能,致力用数据连接真实世界。比如对智能停车场的车场现状、排队数据、收入进行分析;比如定义电子围栏,当物品超出围栏范围时,配置报警;比如在物流追踪、设备管理等物联网低频定位场景下,展示设备轨迹;比如在三维空间可视化需求下,基于阿里云物联网平台构建监控、展示、控制为重点的BIM可视化系统,实现园区、建筑、楼层、房间、设备的逐级可视化。

图:阿里云IoT数据分析产品架构

IoT Studio 物联网应用开发

如前文所述,物联网产业的痛点很多都落在了开发上。阿里云 IoT 产品专家曲文政在演讲中再次阐明IoT Studio作为物联网开发者生产力工具的产品定位与功能。

1 一站式完成云端SaaS 搭建 :用户可以通过IoT Studio轻松搭建出简单IoT SaaS系统,或构建出部分功能集成在原有的SaaS系统中

2 可视化搭建,降低定制化成本 :通过可视化搭建、服务编排的方式让一般嵌入式开发者经过简单培训也可以快速搭建出各种物联网应用;

3 提供AI 等高阶能力: 将高阶能力输出给开发者,增加营收,扩展业务边界;

4 后续提供更多解决方案模版: 通过模版的方式给用户提供即刻可用的IoT SaaS解决方案(包含硬件、嵌入式代码、页面/APP、服务)。

整体而言,IoT Studio作为开发工具,向上承接业务需求帮助用户快速搭建SaaS,向下汇聚能力将阿里体系的能力更快更好地输出给用户,是阿里云IoT产品中承上启下的关键一环。

图:IoT Studio 产品架构

结语

在 汽车 行业,定制化需求增多,产品的敏捷规划、全生命周期运维是厂商的关注焦点;在零售行业,企业追求着精准化营销的目标;在农业,看天吃饭需要向精准化种植转变……

未来的各行各业,在面对各种不确定的因素之时,都希望用数据说话,用数据管理、用数据决策。

在这样的产业愿景之中,阿里云IoT将继续践行技术和商业基础设施的角色,覆盖物联网云管边端开发环节,提供满足各类开发者需要的基础产品,助力合作伙伴创新模式,发展商机。

云计算出现的初衷是以网络为依托解决特定大规模数据处理问题,因此它被业界认为是支撑物联网后端的最佳选择,云计算为物联网提供后端处理能力与应用平台,为众多用户提供了一种新的高效率计算模式,兼有互联网服务的便利、廉价和大型机的能力。

规模化是云计算的核心指标。PC时代,用户以亿为单位计算,移动互联网时代,用户以10亿为单位计算,而在物联网时代,节点数以100亿为单位计算。在PC互联网时代诞生的云计算平台,勉强可支持移动互联网时代,但物联网时代的超大数据流量,就无能为力的,这就需要大型和超大型的网站系统为网站的基础设置提供创新的转折点。

根据设备节点数的增长趋势,将来的数据存储量每两年增加一倍。而且这些设备产生数据量远大于PC和手机,因为这些设备是在记录人类数字化生活,产生的数据将是天量,譬如DropCam产生的视频量,远远超过Youtube一天上传的视频量。我们可以预见在不远的将来,超大流量数据处理将成为对于云计算的挑战!

物联网其实是互联网的一个延伸,未来的物联网的发展还是依靠强大的云计算平台,为人们提供最佳最优的问题解决方案。

物联网实现全球亿万种物品之间的互连,将不同行业、不同地域、不同应用、不同领域的物理实体按其内在关系紧密地关联在一起,对小到螺丝、铅笔,大到飞机、轮船等巨量物体进行联网与互动。物联网能够实现社会活动和人们生活方式的变革。

物联网并不是单纯的,它包括信息的感知、传输、处理决策、服务等多个方面,呈现出自身显著的特点;智慧信息处理和决策、人与物的互动、等物联网与实体间的泛在互联,错综复杂,所有物联网收集和处理的信息最终要依靠强大云计算平台来完成数据的处理决策并输出最优解决方案回馈给终端。

物联网分成三个层次,一个是应用层,还有一个网络层,还有感知层。未来的物联网应该是一个由云+端组成的一个庞大网络,随着传感器网络大规模部署,各种终端就像蓝海一样,分布到各种各样基础设施上收集信息,在通过各种网络将这些信息发送到云端进行计算和处理,经过计算和处理的信息最后到了应用层为不同的领域各种各样行的支撑服务。

简述Inter,物联网,云端计算之间的区别以及联络

因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。

云端计算,物联网,人之智慧技术之间的联络, 人工智慧云端计算物联网三者之间的联络

人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。

日日月月科技云端计算和物联网之间的区别与联络是什么?

云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。

如何认识Inter与物联网、云端计算、三网融合之间的关系

物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。

云端计算大资料物联网之间的区别与联络 2250字左右我写论文

随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

基于大资料与物联网,云端计算之间的关系

物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。

因特网与物联网,云端计算,三网融合之间的关系

因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。

论述网格计算、云端计算、按需计算之间的联络与区别

云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。

详细阐述大资料,云端计算和物联网三者之前的区别和联络

1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13405288.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-29
下一篇 2023-07-29

发表评论

登录后才能评论

评论列表(0条)

保存