不过,过去很多年的时间由于技术和应用场景等各种原因,边缘计算一直没有获得太多的关注,直到5G时代的到来,才让一直处在“很边缘”的边缘计算得到了全新的发展良机。
云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。
云计算vs边缘计算
云计算的不足
随着边缘计算的兴起,在太多场景中需要计算庞大的数据并且得到即时反馈。这些场景开始暴露出云计算的不足,主要有以下几点:大数据的传输问题:据估计,到2020 年,每人每天平均将产生 15GB 的数据。随着越来越多的设备连接到互联网并生成数据,以中心服务器为节点的云计算可能会遇到带宽瓶颈。数据处理的即时性:据统计,无人驾驶汽车每秒产生约 1GB 数据,波音 787 每秒产生的数据超过 5GB;2020 年我国数据储存量达到约 39ZB,其中约 30% 的数据来自于物联网设备的接入。海量数据的即时处理可能会使云计算力不从心。隐私及能耗的问题:云计算将身体可穿戴、医疗、工业制造等设备采集的隐私数据传输到数据中心的路径比较长,容易导致数据丢失或者信息泄露等风险;数据中心的高负载导致的高能耗也是数据中心管理规划的核心问题。
边缘计算的优势和发展
边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。相较于云计算,边缘计算有以下这些优势。
优势一:更多的节点来负载流量,使得数据传输速度更快。
优势二:更靠近终端设备,传输更安全,数据处理更即时。
优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
两者既有区别,又互相配合上文讲了云计算的缺点以及边缘计算的优点,那么是不是意味着在未来,边缘计算更胜云计算一筹呢?其实不然!云计算是人和计算设备的互动,而边缘计算则属于设备与设备之间的互动,最后再间接服务于人。边缘计算可以处理大量的即时数据,而云计算最后可以访问这些即时数据的历史或者处理结果并做汇总分析。
1、延迟问题
延迟是指处理和分析捕获数据所需的时间。连接到互联网的设备必须在100毫秒内响应,有时甚至不到10毫秒。因此,计算过程必须尽可能本地化,以抵消远距离传输数据的固有延迟。
通过物联网中的边缘计算,计算将在源头附近完成,例如传感器,如果汽车上的传感器判断出将要发生碰撞,那么系统就必须具有足够的确定性,能够在一定的时间范围内部署安全气囊,如果在长距离传输数据方面有任何滞后,那就是根本不安全的。
2、带宽问题
运行软件和生成数据的大多数物联网设备需要链接到云以存储和进一步处理该数据。因此,需要大量的功率和带宽将IoT数据传输到云。
在物联网中使用边缘计算,组织可以减少互联网带宽的使用,因为可以在源附近处理大量数据。
例如,边缘计算相机可以通过分析警察仪表板的视频源来帮助执法机构减少带宽,相机摄像头可以实时生成大量的视频和音频记录,但只有在必要时才将相关数据发送到云端。
3、带宽成本问题
物联网应用程序生成大量相对低价值的时间序列数据。这意味着带宽成本,设备获得带宽的机会成本,存储和分析成本,以及云中这些低价值时间序列数据的计算成本。
有了边缘计算,这些数据就可以被捕获,如果有必要的话,在将数据发送到云或其他上游聚合点之前进行分析和汇总,这比通过WAN链路发送未经过滤的数据要便宜得多,后者通常非常昂贵。
4、传统系统连接问题
公司经常连接到物联网的传统系统具有非IP/以太网接口。因此,他们需要来自模拟或专有系统接口的物理转换,以便能够使用和分析数据。这只能在生成数据的原始设备旁边完成。
这是物联网中的边缘计算可以提供帮助的地方。边缘可以充当新旧之间的中介,为没有现代计算能力的传统资产添加智能功能。
5、物联网安全问题
尽管云服务提供商已经为终端客户的物联网产品开发了出色的安全性,但运营技术专业人员仍然担心他们的敏感数据一旦离开企业的墙壁就不会安全。
为了解决这个问题,可以在边缘添加更多智能来保护系统,使其更强大,可以抵御黑客攻击和入侵。因此,任何中断都将仅限于边缘计算设备和这些设备上的本地应用程序。
边缘计算在物联网中应用的领域非常广泛,特别适合具有低时延、高带宽、高可靠、海量连接、 异构汇聚和本地安全隐私保护等特殊业务要求的应用场景。为了打造更适合行业应用的物联网通讯终端产品,四信通信充分利用边缘计算技术,大力研发生产出了F-G200边缘计算网关,该系列产品可帮助用户快速接入高速互联网,实现安全可靠的数据传输。
边缘计算有以下的六大特点:第一,去中心化
边缘计算就是让网络、计算、存储、应用从“中心”向边缘分发,以就近提供智能边缘服务。
第二,非寡头化
边缘计算是互联网、移动互联网、物联网、工业互联网、电子、AI、IT、云计算、硬件设备、运营商等诸多领域的“十字入口”,一方面参与的各类厂商众多,另一方面“去中心化”在产品逻辑底层,就一定程度上通向了“非寡头化”。
第三,万物边缘化
边缘计算和早年的IT、互联网,如今的云计算、移动互联网,以及未来的人工智能一样,具备普遍性和普适性。
第四,安全化
在边缘计算出现之前,用户的大部分数据都要上传至数据中心,在这一上传的过程中,用户的数据尤其是隐私数据,比如个体标签数据、银行账户密码、电商平台消费数据、搜索记录、甚至智能摄像头等等,就存在着泄露的风险。而边缘计算因为很多情况下,不要再把数据上传到数据中心,而是在边缘近端就可以处理,因此也从源头有效解除了类似的风险。
第五,实时化
随着工业互联网、自动驾驶、智能家居、智能交通、智慧城市等各种场景的日益普及,这些场景下的应用对计算、网络传输、用户交互等的速度和效率要求也越来越高。以自动驾驶为例,在这些方面,几乎是要求秒级甚至是毫秒级的速度。爱陆通的具有边缘计算技术的工业网关可以更好地进行数据传输。
第六,绿色化
数据是在近端处理,因此在网络传输、中心运算、中心存储、回传等各个环节,都能节省大量的服务器、带宽、电量乃至物理空间等诸多成本,从而实现低成本化、绿色化。物联网就是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。数据通过与人工智能、云计算、物联网、边缘计算等新兴技术渗透融合,在智能制造、绿色低碳、共享经济、现代供应链、中高端消费等领域培育形成了新的增长点,成为创新发展的重要驱动力。在发表《数字技术的发展趋势》的主旨报告中指出:世界经济数字化转型是大势所趋。中国是数据大国,凭借先进数字技术、巨大人口数量,庞大的制造业基础,人口红利正在转变为数据红利。数据通过与人工智能、云计算、物联网、边缘计算等新兴技术渗透融合,在智能制造、绿色低碳、共享经济、现代供应链、中高端消费等领域培育形成了新的增长点,成为创新发展的重要驱动力。
物联网平台指AloT产业链中负责连接的网络,承担着将终端设备、边缘、云端连接起来的职责。随着AloT产业发展,物联网设备数量快速增加,设备种类、设备应用场景日益丰富,更灵活的无线网络连接能力将是市场的必然选择。
目前全球有超过 600 多家物联网平台,物联网平台参与主体数量有很多,主要可以区分为通信厂商、互联网厂商、IT 厂商、工业厂商、物联网厂商、新锐企业。每种类型平台功能特点略有不同。
通信厂商主要包括运营商和通信设备供应商。如ctwing物联网市场,联通物联,中移物联,主要特点是汇聚电信能力和互联能力,向合作伙伴提供统一规范的服务。以ctwing为例,将物联网与5G、AI 、边缘计算、区块链、大数据等新技术深度融合,并基于中国电信CTWing50打造的物联网一站式购物平台,成为中国电信物联网产业生态的汇集地,提供丰富的5G、芯片模组、应急消防、安防监控、追踪定位、智慧能源、智慧农业、智慧养老等细分行业的产品服务,为合作伙伴提供产品快速上架通达省市的渠道。
互联网厂商主要包括阿里巴巴、腾讯、百度、京东等企业,这类企业在生态构筑和 AI 技术上有优势。如阿里云提供云管边端等基础产品接入及技术赋能、行业解决方案合作与实施、软硬件销售、营销推广、需求对接等快速商业变现通道。
IT 厂商主要包括浪潮、IBM、中国通服等企业,这类企业在 IT 方面有深刻理解。如用友利用物联网、AI、数字孪生等技术搭建的平台,拥有精智物联平台、精智云盒、精智时序数据库YonTimesDB+流式计算引擎、精智数据魔方、精智工业大脑等产品。
工业厂商则包括富士康、三一集团、施耐德电气、西门子、徐工集团等工业企业为主,平台以工业垂直能力为主。如通用电气是连接机器、数据、人员以及其他资产,使用分布式计算、大数据分析、资产数据管理和 M2M 通信的领先技术,提供广泛的工业微服务,使企业能够提供生产力。
物联网厂商平台主要根植于物联网时代,为物联网而生的平台企业,主要包括创通联达、联想懂的通信、涂鸦智能、小匠物联、萤石云等。如联想采用互联网云平台架构设计,依托物联网、机器视觉识别等技术,接入感知设备采集用户侧数据,建立统一的数据中心和设备管理中心,形成统一的应用服务中台,提升了设备状态感知。
新锐企业大多由 IT、OT、CT 领域经验丰富的专家建立,往往专注在某个领域。如瀚云工业物联网平台面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、d性供给、高效配置。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)