随着互联网技术、传感器技术和人工智能技术的快速发展,物联网技术也应运而生,物联网技术在各类领域能发挥重要性变革,对解放生产力、提高工作效率和推动规模化生产等方面贡献颇大,特别是在农业领域大有可为。实现智慧农业,必须依靠物联网技术为依托,以智慧平台为核心,立足市场需求,构建生产组织智能化、产品质量溯源化、市场经营网络化为一体的产业体系。
物联网是通过智能传感器、射频识别、激光扫描仪、全球定位系统、遥感等信息传感器设备及系统和其他基于物-物通信模式的短距离自组织网络,按照约定的协议,在物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种巨大智能网络。它是通信网和互联网的扩展应用和网络延伸,主要是实现人与物、物与物的信息交互。
二、物联网四层模型
在信息层面,数据信息经历生成、传输、处理和应用四个阶段,分别对应着物联网的感知识别层、网络构建层、数据处理层和综合应用层。感知识别层是利用感知技术和智能装备对物理世界进行感知识别。网络构建层是按照特定的通信协议搭建各类网络对信息进行传输,以实现物-网互联。数据处理层通过大数据和人工智能技术对网络层采样的数据进行预处理、计算存储和数据挖掘等一系列 *** 作,最大地发挥出信息的生产效能。综合应用层是集成各类技术以实现实时控制、精准管理和科学决策等功能的应用系统,从而改进人的生产方式。各类技术应对不同环境、不同需求独立展开工作,各层面间又是联系紧密,如同链条式协同配合。
感知层作为物联网的“神经末梢”,主要是通过信息感知技术将生活生产各方面映射成数据信息,并能可靠传送到网络层,实现物理世界和信息世界连接起来。信息感知技术是指利用传感器、RFID、GPS和RS等实时实地对农业领域物体进行信息采集和获取。在农业生产现场可以利用无线传感器采集温湿度、光照、溶解氧浓度和农作物长势等参数,利用视频监控设备获取农作物成长现状,利用遥感技术大规模感知农作物表面和环境因素。信息感知层作为物联网的基础,获取大量的数据信息,为信息进一步加工、处理、分析而科学决策和指导生产经营打通“二元”壁垒。
网络层要在感知层和处理层发挥承上启下作用,是以现场总线技术、无线传感器网络技术(WSN)和移动通信技术互为补充的通信网络将传感设备连接“上网”。信息传输技术可分为有线和无线、短距离和长距离,它们有各自特点、应对不同环境、利用不同信道共同组建集成网络体系,以实现高度可靠的信息交流和共享。无线传感器网络成为农业信息传输的“主力军”,通过包括传感器节点、汇聚节点、任务管理节点。大量具有独立处理能力的微型传感器节点布置在监测区域逐跳传输,并路由到汇聚节点,然后通过互联网或卫星抵达任务管理节点,最后用户通过任务管理节点配置和管理传感器网络以实现监测任务发布和数据收集。常见的无线局域网技术有蓝牙、WIFI、ZigBee,无线广域网技术有LPWAN、NB-IOT、4G和5G。特别是以“万物互联”为目标的5G将农业物联网数据传输效率带来“质的跃升”。
处理层是农业物联网的“灵魂”,通过信息处理技术对感知层采集的信息存储和挖掘分析形成预测预警、智能决策、优化控制和疾病诊断等智能模型,从而对农业生产和经营给出科学的指导。农业生产和经营过程中,数据信息是呈指数型爆炸产生,不仅是体量大,而且结构复杂、实时性强、关联度高,必须通过大数据技术处理、存储和管理,才能从海量数据中获取更多的价值。农业大数据技术平台是以Hadoop架构、MapReduce软件模型、其他组件补充的生态软件体系形成的分布式海量数据存储管理、运算处理和分析平台。数据挖掘是指从海量数据中通过算法搜索隐藏的信息关系,主要手段是机器学习、深度学习、计算机视觉等人工智能技术。只要获取隐藏知识,才能帮助决策者做出合理、正确的决定和决策。
应用层是农业物联网的“指挥室”。主要通过感知技术、传输技术、处理技术和设备进行软硬件综合集成,形成智能控制、监控决策、专家系统、物流溯源等等应用。根据生产、经营的和管理不同需求,开发出特定功能的应用,用户通过web端或移动客户端应用实时掌握信息、发出精准控制指令。可以说,先进技术发挥设备的最大生产力,综合应用改变人的工作方式,有利于做出更科学合理决策。
物联网就业前景很好,物联网产业具有产业链长、涉及多个产业群的特点,其应用范围几乎覆盖了各行各业。
物联网专业是教育部允许高校增设新专业后,高校申请最多的学校,这也说明了国家对物联网经济的重视和人才培养的迫切性。物联网的产业规模比互联网产业大20倍以上,而物联网技术领域需要的人才每年也将在百万人的量级。
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。
物联网与各种网络的关系物联网(InternetofThings)的概念最早在1998年由美国MIT大学的KevinAshton教授提出,把RFID技术与传感器技术应用于日常物品中形成物联网,着重的是物品的标记。2005年ITU以InternetofThings为题发布互联网报告,强调物品联网。近年随着移动互联网技术和云计算技术的发展,特别是节能环保和社会安全等需求,物联网再度受到关注,但聚焦在通过感知达到智能服务的目的。在2010年我国的政府工作报告所附的注释中对物联网有如下的说明:是指通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。它是在互联网基础上延伸和扩展的网络。
传感网使用传感器作为感知元件,应用上可以无需基础网络,通常也不强调智能分析与决策。物联网使用传感器、RFID、激光扫描器、红外标记、普通条码、二维码、全息光学条码、GPS等作为感知元件,需要通过基础网络实现物与物和人与物互联,强调对感知数据的汇聚和挖掘及分析决策。物联网的组成包括三部分,即泛在化的传感节点及网络、异构性的网络基础设施、普适性的数据分析与服务。物联网与传感网的区别不在于联网的物件数量而在于感知单元的多样性和感知结果的智能利用,可以说传感网是物联网的一个子集。
物联网的底层借助RFID和传感器等实现对物件的信息采集与控制,通过传感网将传感器等感知节点的信息汇集,并连到核心网络,基础网络是物联网的重要组成部分,用于承载物物互联或物与人互联的信息传递,物联网的上层实现信息的处理和决策支持。物联网可用的基础网络可以有很多种,通常互联网最适合作为物联网的基础网络。尽管下一代互联网将以支持物联网的应用作为主要目标之一,但物联网并不是互联网的下一代,物联网可以说是互联网上的一种业务或应用。物联网强调的是认知,是互联网向感知平台和数据挖掘两个方向的拓展。物联网与互联网上传统业务相比有不同的特点:在物联网以公众网络(例如互联网)作为基础网络平台的情况下,物联网相当于互联网上面向特定任务来组织的专网(***)。互联网是全球性的,但物联网往往是行业性的或区域性的,物联网的行业应用的多样性与承载平台的通用性之间需要有中间件来适配。
M2M(Machine-to-Machine)与物联网有关,M2M通信与物联网的核心理念一致,不同之处是物联网的概念和所采用的技术及应用场景更宽泛,M2M主要聚焦在无线通信网络应用上,是物联网应用的一种主要方式。与物联网有关的还有CPS(CyberPhysicalSystem),CPS是计算、通信与物理过程的综合,CPS与物联网有类似的能力,物联网通过数据挖掘可得到决策建议,但通常是要上报主管人员再决定是否要采取措施,而CPS强调循环反馈,要求系统能够在感知物理世界之后通过通信与计算再自动执行对物理世界的反馈控制措施。从物与物通信进一步扩展到物与人以及人与人通信,支持个人和/或设备无论何时、何地、何种方式以最少的技术限制接入到服务和通信的能力,这种网络发展的愿景被称为泛在网。
在物联网上所用的通信技术比较成熟,但仍需要考虑物联网节点多功率小且需要接力传送等特点进行适配。
物联网通常有很多传感器节点,在传感过程中,首先是需要识别被感知的对象和感知信息。在给定任务的情况下使用最少数量的节点并最省功耗是物联网设计的目标。节点的传输距离、节点的合理分层分簇、拓扑控制等一系列节点的几何布局,是物联网感知层面设计的主要问题。根据应用和服务对物联网节点分群分簇,每簇会有一个节点负责搜集数据并将集合的数据传到网关,簇头的选择需要考虑节点的存储、过滤和聚合能力,为了不致过早耗掉簇头的电能,每簇内各节点可能需要轮流担任簇头。由于物联网节点数量密集,覆盖范围宽,而且新的物品的加入将要求节点添加或删除等,在节点的配置上要从减少安装和维护成本考虑,要尽可能少用人工干预,其次是网络发现技术,要求节点能够发现在其所处环境内的相邻节点的存在和身份,以便协商分享的任务,在物联网中网络是动态变化的,新的物品的加入将改变网络的拓扑,而且物品的特征还会随自治程度而变,物联网应具有基于智能匹配来对网中的节点自动发现和指配、自动部署与激活、解除激活和性能监视,还可以在任何时间对所分配的作用进行调整和调度。
有些节点由于制造的不一致,缺陷需要在出厂前校正,由于环境影响、老化等原因使所感知的数据有偏差,还需要在数据收集时校正或去除,还需要考虑传感器与环境之间的耦合关系。在感知数据的报送方式上,分为主动式和反应式两种。物联网收集的数据如果原封不动地存储将占用海量存储资源,必须通过压缩去掉重复冗余的数据,并且需要开发图像信息检索方法和搜索引擎,以有效提高物联网设施的利用效率。收集的数据不限于被感知物件的信息,还包括与事件的发生可能有相关性的政府数据、市民产生的数据等,要在认证安全、隐私保护等方面对数据进行过滤与正确性的确认。为了全面准确提供智能决策,希望有多源甚至异构的数据,通过多数判决和推理分析,去逼近真实环境,最后利用专家系统和数学模型,参考历史数据,综合异构来源的多种信息,进行分析推理,给出决策。
物联网需要有网管,控制物联网节点的休眠和叫醒,检测和登记节点的移动、发现相邻节点,并且在一个特定区域内均衡和调度传感任务等。需要关注物联网能量获取与存储及节能问题,实现能量测量和电量不足的预报以及动态功率优化等能量管理。从安全与隐私来看,物联网是双刃剑,它能对生产安全、反恐维稳和家居安全起积极作用,但如果感知数据偏差太大和判决失误,将弄巧反拙,因此对物联网的可靠性和安全及隐私需要足够重视。
物联网是两化融合的切入点,也是民生服务的新亮点,其应用面很宽,将带动新的产业特别是现代服务业的发展,其社会效益高于经济效益。物联网看似门槛不高,但如何在给定任务的情况下最大化网络的生命周期和最小化组网及应用成本均是严峻的挑战。低成本、高可靠、长寿命的传感器和RFID是物联网推广应用的前提,数据挖掘与智能分析是体现物联网效益的关键,也是物联网的薄弱环节。当前对物联网的理论和技术的研究还落后于应用示范,未来需要在物联网技术方面加大创新开发力度。同时还要重视统筹规划、资源共享,务求实效。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)