这个工业物联网的小盒子作用就是数据的采集与传输,我们经常将其称作为工业网关、工业智能网关。工业网关作为一个数据采集模块,他经常要做的工作就是采集设备上的PLC数据信息,并将读取到相关数据信息传输到工业云平台。最终,工业用户实现在云平台读取相关需要的信息。一个小小的盒子承担着数据的采集和传输的双层作用,把守着工业设备数据传递的关口。当然,很多人也会发出质疑,一个小小的盒子竟然会有这么大功能呢?信息传递安全吗?能够保证其实时数据传递不会出现信息的丢失吗?
确实就是这个小盒子,功能作用还真是不一样。对于一些工业智能网关,在设计之初就考虑到信息安全这个问题。例如御控yc-5300系列网关就能同时满足实时传输、断点传输和加密传输这个要求。所以即便是在断网的情况下,数据信息也不会出现丢失,加密功能也很好的保护了用户的信息安全性。这只是归功于网关的一些基本配置,对于一些更高配置的工业级网关可以实现边缘计算、设备现场的实时监控、设备远程监控以及调试等功能。这些功能的实现都是依靠于这个不起眼的智能网关盒子。小盒子大本事,如果没有这个小盒子对设备数据的采集和传输,工业物联网方案也就成为空谈。
工业网关作为工业物联网的硬件是其方案实施的一个根本保证,目前市面上工业网关的品牌众多。选取一个适合自己的网关盒子十分重要,但是其最终还是要落地到其功能选择上。好鞍配好马,好的网关盒子配上专业工业云平台才一套完整可执行的工业物联网方案,才能为工业用户解决问题,提高效率。
如果你想了解更多的工业网关,给自己的设备配上一台合适的网关,不放联系我们,为您提供专业的网关盒子,满足您的需求。
峰会将进一步探讨区块链在与其它数字技术融合创新之后,如何通过打造可信数字底座,保护数据隐私,挖掘数据价值,赋能和加速各行各业的数字化转型。
在峰会开始前,区块链首席经济学家邹传伟团队围绕“区块链如何赋能数字化转型”这一问题,撰写系列行业研究报告,深度解读在新基建和数字化迁徙背景下,区块链如何与其它技术融合发展,发挥信息基础设施应有的作用。
本文作者:王普玉 校对:邹传伟
根据北京国信数字化转型技术研究院(国信院)与中关村信息技术和实体经济融合发展联盟(中信联)给出的定义,数字化转型是顺应新一轮 科技 革命和产业变革趋势,不断深化应用云计算、大数据、物联网、人工智能、区块链等新一代信息技术,激发数据要素创新驱动潜能,打造提升信息时代生存和发展能力,加速业务优化升级和创新转型,改造提升传统动能,培育发展新动能,创造、传递并获取新价值,实现转型升级和创新发展的过程。围绕数字化转型,本文将讨论以下三个问题:第一、从企业层面,为什么要数字化转型?第二、工业互联网平台在数字化转型中有什么作用?第三、分布式认知工业互联网在企业数字化转型中能提供什么?
一
数字化转型发展
在激烈的市场竞争中,企业需要依靠产品质量、价格、服务以及长期积累的品牌形象来维持市场竞争力,但随着我国人口红利消失导致的人力成本上涨,以及国际贸易形势不明朗及疫情影响导致的市场发展受阻,让企业原有竞争优势正在消失,处于价值链最底层的工业企业更是雪上加霜。该如何走出困境?目前主要从两方面破冰,第一种是降低运营成本继续保持价格优势;第二种是通过创新商业模式扩大市场销售来提升利润。
在讨论运营成本前,我们引入两组概念,第一组是供应链模式:供给推动式和需求拉动式;第二组是四大利润源。
1、供应链模式
供给推动式是指企业根据市场预测数据进行产品设计、生产及销售;
而需求拉动式是指企业根据市场订单,按需进行快速响应,通过高效计划、组织、协调和控制来满足产品生产及供应。
2、四大利润源
市场永远在追求着更低的价格和更高的质量。在价格控制方面,如表1所示,主要经历了四个阶段:第一阶段主要通过控制原材料成本、扩大规模效应获取利润。当第一利润源触及上限时,开始了第二利润源,通过精益管理提升企业内工作效率及延长员工的工作时间来降低用工成本。在新的利润源再次进入上限时,人们发现物流成本占据企业总运营成本的30%,因此,降低物流成本成为第三利润源。
表1 四大利润源对比
前三个利润源均是围绕企业内部成本控制来增加收益,但当企业内部运营成本节省达到上限时,人们注意到上游供应商及下游客户的运营管理问题。一个具备完整功能的产品进入市场前,需要供应链上多个公司的共同配合,其中任何一家企业的高运营成本都会导致最终产品的价格上涨,这会使产品在激烈的市场竞争中丧失竞争力。于是围绕着供应链信息集成及信息共享开始了新一轮的降成本浪潮,被称为第四利润源。
如表1所示,从第一到第四利润源,每一阶段都有各种系统在信息处理、存储和管理中的支撑,例如生产执行管理系统MES,企业资源管理ERP,仓储管理系统WMS,供应链管理系统SCM等等。
在经历了四个利润源后,未来新的利润源又在哪里?政府、企业、研究机构都在尝试寻找答案,例如上海第二工业大学郝皓教授在2015年提出将逆向物流作为第五利润源,通过逆向物流实现产品再销售、再利用、再循环和再制造的全生命周期管理。也有企业认为以需求拉动式为导向的个性化定制将成为第五利润源。以上说法都有道理,但都不准确,本文认为,真正的第五利润源已经在路上,即企业数字化转型。在过去十几年,技术的快速发展衍生出大量新的商业模式,包括新零售、直播带货、社区团购等,但上游工业领域却依然保持着传统的运作模式,无论是逆向物流发展带动全生命周期闭环管理,还是C2M定制化商业模式,都需要依赖于各环节的快速响应,对企业数字化管理要求高。因此,无论是企业对新利润源挖掘的需要,还是市场端的需求,工业企业数字化转型势在必行。
不同于前四个利润源的相互独立,第五利润源是应用新技术重新赋予第一、二、三、四利润源全新的生命,同时由数据驱动的创新商业模式将大量出现。因此,第五利润源不仅能够降低运营成本,也能够提高主动盈利能力。
二
工业互联网平台的价值
1、工业互联网平台之第一利润源
IT与OT的融合,实现人、机、物、料、法、环的数据实时采集及传输,能够做到生产过程的实时监测,再应用AI、大数据分析等技术实现自动化智能巡检、智能质检、智能故障预测、智能参数调优、智能耗能优化、智能设备运维、智能盘点等,能提高生产作业效率、降低成本,从单机智能升级为系统智能。
2、工业互联网平台之第二利润源
传统制造业的管理一直围绕着人,产品从0到1的过程,依靠人力难以实现或实现效率低的工作,可以使用机械设备替代,而经过工业革命和信息化时代的影响,出现了大量节省人力的机械设备和 *** 作系统(MRP、MRPII、MES等),让生产效率提升、生产成本降低。随着信息技术的发展,虽然有滞后数据可以作为参考,但其本质依然围绕人的经验和人的现场 *** 作。而工业互联网能够赋予第二利润源全新的角色,从运营管理中解放人的执行任务,例如质检、故障排查等工作通过AI和大数据分析实现运营智能化管理。在执行人员减少后,企业需要更多创新者,让企业创新发展迭代速度更快。其次,随着人的经验积累转换为知识图谱,将经验和知识域可视化,指导人工智能算法迭代和决策制定。
3、工业互联网之第三利润源
在工业物联网领域,物流发展走在比较靠前,经历了人工物流、机械物流、自动化物流到现在智能物流,物流的管理效率和成本得到了极大改善。例如运输管理,从早期货物运输监控数据需要依赖于运输工具挂靠点的数据回传及汇总,到现在能够通过GPS、RFID、各类传感器,实时掌握运输途中货物的温湿度、地理位置和件数等信息,能够根据运输目的地和实时交通拥堵情况对运输线路规划等。受技术、资本等各方面影响,目前智能物流主要在第三方物流企业和电商企业发展迅速,而工业企业物流发展较为缓慢,大多仍处于机械物流和自动化物流阶段。工业互联网平台能够帮助工业企业实现快速升级转型,降低系统开发技术难度和成本,IaaS、PaaS、SaaS等平台能够减少系统从0到1开发时间,实现快速低成本数字化转型升级。
4、工业互联网之第四利润源
供应链集成在一定程度上提升企业合作、降低供应链成本以及库存牛鞭效应[1],但无论企业内部供应链还是 社会 供应链,遗留了一个对多方协作卡脖子的问题,即数据孤岛问题。前面我们介绍第一到第四利润源,提到了MRP、MRPII、ERP、SAP、MES、SCM等系统,每个系统如同孤立的数据烟囱,对协作效率有着极大影响。主要有两方面原因:第一、现有EDI数据孤岛打通方案成本高,中小企业难以负担;第二、涉及供需多方协作时,彼此缺乏信任,不愿将企业内部数据共享给外部。工业互联网平台提供多种数据采集及处理解决方案,打破数据孤岛,实现数据无阻碍流转。在数据使用中,通过隐私计算保证数据安全,同时合理授权,让数据可用不可见,解决数据共享的后顾之忧。
5、工业互联网平台之第五利润源
在数字化10阶段,属于人适应系统;而进入数字化20阶段,适应公司现有作业模式的定制化软件将起着至关重要的作用。
图1:数字化转型10和20阶段的对比
因此,从技术角度,平台如何让企业快速及高效地完成定制化软件的开发,这将对工业企业数字化转型起着非常重要的作用。从市场现有产品看,包括基础设施即服务IaaS,平台即服务PaaS和软件即服务SaaS,能够让工业企业方便地利用平台提供商现成的低代码、甚至零代码工具完成系统开发,实现“人人都能做开发者”,即解决“技术人员不懂业务,业务人员不懂技术,开发的系统不好用”问题。未来低代码(或零代码)开发工具如同word、excel等办公软件,平台把各类接口做成图形界面,让不懂代码开发的人,通过图标拖拉的方式,开发自己需要的软件来减少低效率的重复工作。员工从原来被动执行者变为创新者,参与进从上到下的数字化改革中,用工具真正方便业务人员工作。
三
基于区块链技术的分布式认知工业互联网
社会 经济分为生产和流通两个领域,中心化工业互联网平台使用数字化技术替代信息化技术解决的是生产领域问题,而基于区块链技术的分布式认知工业互联网,解决的是流通领域的数据信任问题,但流通领域数据又会影响到生产领域的产品研发、产品质量管理等。
1、降低信任成本
商业模式正在从单边(规模效应)走向双边(网络效应),进入数字化时代后走向多边平台(生态效应)。中心化方式似乎也能够解决信任问题,但中心化模式下的信任主要依靠第三方权威机构的背书,这种方式成本高、效率低。例如,国际贸易买卖双方不信任的情况下,通过银行背书使用信用证服务解决付款问题;为满足银行要求,双方需要提供大量的证明来满足信用证条款,效率非常低下且成本高昂。但如果使用区块链技术,将真实数据从源头上链,保证数据安全、可信以及不可篡改。交易前,买卖双方拥有彼此过往真实的交易记录,以及产品的生产信息,这些信息是否会有助于降低交易的撮合成本?在交易过程中,通过智能合约的应用,一旦达成某个约定即可自动完成付款,这将会极大降低交易成本和交易时间。尤其进入多边平台,如果仍然使用中心化的信用证明体系,将无法构筑生态建设的护城河——信任。
2、重新定义协作关系
供应链多方合作,中心化的共识机制和治理方案更多体现在合同层面,但无法将彼此的利益真正绑定,较难促进生态的良性发展。但在去中心化解决方案中,参与方将资产以token或积分形式置于链上,从技术上实现多方利益绑定,一旦任何一方做出有损生态建设的行为,将会影响token或积分价值,这会影响联盟链上所有参与者的利益。在分布式认知工业互联网平台中,联盟中每个参与者都会积极维护生态利益,因为这也等同于维护着自己的利益。
3、可信数据流转
在产品研发或产品全生命周期管理中,流通数据需要工业企业从下游多个合作商处获取。而传统技术下难以保证数据真实性和安全性,在分布认知工业互联网中,隐私计算能够做到多方数据可用不可见,保证数据安全及合规。此外,根据数据贡献量给与合作商token或积分奖励,鼓励多方数据共享及流转。未来数据交易市场可能会出现更多合规的形式,例如基于区块链技术的数据信托、数据银行等模式。
4、保证数据安全
传统模式下,工业企业依靠于物理隔离实现厂内数据与外界的隔离,但在OT与IT融合下物理隔离屏障被打破,如何保证数据出本地后的安全则需要依靠多方共同努力。在设备通信中,需要做好设备身份认证管理,防止数据被攻击,而分布式认知工业互联网平台通过设备公私钥实现匿名管理,有效降低攻击风险。在数据存储中,采用分布式存储技术,即使单点攻击也无法让攻击者获取完整数据。
5、赋能商业模式创新
可信数据将开启全新的商业模式创新时代,每个组织的商业角色有可能会发生改变。传统商业模式下(供给推动模式),信息是非常碎片化的,供应链上不同参与者都拥有一部分产品相关的碎片数据,用这些不完整的数据去做产品升级、客户服务,难以达到最佳目的。但技术发展的今天,市场开始根据消费习惯、消费特征等因素挖掘每个消费者的需求,制造方式也从M2C进入C2M时代,这些都需要有更多完整、可信、合规的数据,例如,电动 汽车 并不是所有人都需要1000km续航的电池,通过区块链技术,用户授权驾驶数据给电动 汽车 公司,为其配置最合适、性价比最优的电池。再比如, 汽车 保险不再以车辆价值、出险次数等作为保险费用收取的单一指标,未来可能会基于可信里程数据进行保险费用收取。除商业模式的变化,每个组织的商业角色也可能会发生变化,电动 汽车 生产厂商,角色也将从生产商转变为服务商,以蔚来 汽车 为例的车电分离模式,以租代售模式,让 汽车 生产厂商的业务延展到产品全生命周期的管理中,这些模式创新仅仅是数字化时代的开始。
2021年二季度,Ruff 南潮物联通用无线数传场景的小网关 RGWi0600 开始实现量产,从前期研发到落地商用,仅用时3个月时间。同时,可以云端远程配置的Ruff IoT设备管理平台10版本也正式上线发布。其 独创的内置13寸TFT彩屏 ,可帮助用户快速了解设备采集上报、SIM卡等信息。
该网关是一款 4G Cat1 无线数传网关,支持Modbus RTU 协议和数字量输入边缘数据采集上报;通过 Ruff IoT 云平台,用户可以通过云端远程配置,在PC端和小程序随时查看设备运行数据,接收并处理告警信息。RGWi0600设备可广泛应用于工业远程监控、市政能耗监控等行业。
值得一提的是,该网关极具性价比,同时可结合 Ruff 南潮物联的设备管理平台自主实现开箱即用,一分钟完成设备数据采集配置。
0600网关的特性与优势
1) Cat1低功耗低延时,适合网络速率要求不高、稳定性高且成本敏感的物联需求
2)1 路 RS485/RS232 和 2 路 DI 硬件接口
3) 内置13寸TFT彩屏 ,快速了解设备采集上报、SIM卡等信息
4)内置eSIM,免插卡免激活,开机即用,云端实时监控流量
5)远程数据采集配置,远程固件升级
6)网关运行状态监测,本地显示屏展示数据采集上报状态、设备固件SIM卡等信息,同时支持远程设备监控、实时/ 历史 运行数据查看
7)PC端消息、微信、短信等多种告警信息推送
8)免费稳定的Ruff IoT 云平台服务
零代码实现SaaS端自主配置指南
通过我司开发的IoT设备管理平台,可以实现设备的快速接入、配置采集和管理。具体配置过程如下:
1)取出RGWi0600通用无线数传网关,将天线旋紧在RGWi0600天线接口上。RGWi0600已内置eSIM卡(每月100M,免费1年),如使用自备4G卡,插入自备SIM卡,设备会自动切换已插入的4G卡联网。
2)将待采集的工业设备/传感器与网关接线。
3)将网关电源接线端子接好电源线,接通电源。
1)点击快速接入,添加设备
输入设备SN和设备名称。设备SN可通过扫描网关机身二维码获得。
2)选择产品
产品是定义采集设备属性的集合,需要用户自行定义。若未创建产品点击管理按钮,新建产品
在新建产品页面,选择网关型号RGWi0600,输入产品名称。
在产品列表页,,进入产品属性配置页面。
点击新增属性,定义待采集设备属性名称、数据类型、读写方式等。
配置完成,返回选择产品页面,点击刷新,选择刚刚创建的产品,选中点击下一步。
3)配置采集
在该页面可查看到设备在线状态并针对属性进行采集配置。
编辑采集配置的采集周期、采集协议和硬件接口。
配置完成后,点击测试,可实时查看到采集数据和时间。
4)接入完成
接入完成后,配置会下发至设备,等待1min左右设备重启成功后上线,可跳转至设备查看实时数据。
1)查看实时数据和 历史 数据
2)查看设备上下线记录
3)查看告警
4)查询物联网卡流量
详细过程,可查看网址: >
不管是物联网、云计算还是大数据时代,都是我们信息时代的发展基石,那么它们到底是个什么东西呢?一起了解下吧!
当我们进入到互联网时代的时候,不管你是听一首歌,还是浏览一个网页,关于你的各种数据就已经开始存在着了,那么如何存储这些大数据?并且如何灵活的运算和分析这些数据?这都是大数据平台所要做的事情,提供一个媒介来看管这些数据,在大数据平台,开发者们或可以将写好的程序放在“云”里运行,或是使用“云”中提供的服务。
所以接下来,我们要讲的就是云平台,都说企业上云,这“云”到底是什么呢?其实,我们可以把云看做是一个容量无限大的仓库一样,这也是云计算不断发展下的产物,为企业提供一些建模,开发,集成,运行,管理等一系列的IT解决方案,在“云”上,可以实现资源的调动,存储等,以此来保障整个IT系统不崩盘,顺利的运行。
物联网是互联网发展成熟后的一个必然趋势,互联网的包括的范围还是非常的有限,但是物联网不同,它要把一台冰箱,甚至马路上的一个小灯泡都能通过物联网技术连接起来,赋予他们新的智能化的东西。可以这么说,万事万物都在物联网的“掌控”之中。
大数据 说的是一种移动互联网和物联网背景下的 应用场景 ,各种应用产生的巨量数据,需要处理和分析,挖掘有价值的信息, 侧重于海量数据的 存储、处理与分析 ,从海量数据中发现 价值 ,服务于生产和生活。
物联网 是把所有物品通过信息传感设备与互联网连接起来,进行 信息交换 ,即物物相息,以实现智能化识别和管理,物联网的发展目标是 实现万物互联 , 应用创新 是物联网发展的核心,智能手表/手环、无人驾驶、无人商店、智能工业、智慧城市等等都物联网的应用场景, 基于物联网延展出来的 边缘计算 已经开始兴起。
云平台 则是各种资源的 虚拟化、优化配置与管理 ,在此之上提供开箱即用的应用服务给用户,典型分为 IaaS、PaaS、SaaS 三种模式,其中IaaS、SaaS发展的比较快,IaaS方面的赛道已被头部玩家锁定。目前PaaS的发展也在快速发力, 中台概念的普及推动着PaaS的发展, 基于PaaS开发SaaS ,或者 SaaS附带高扩展能力的PaaS 都是典型的形态 。
云平台和物联网、大数据是密切相关 ,物联网提供海量数据采集、基本处理的抓手与通道,云平台提供虚拟基础环境、运行环境、开发环境、应用平台,大数据提供数据处理模型、计算、加工、分析以及更高级的趋势分析、智能预警等,我国工业2025、工业互联网发展对这三块需求都比较旺盛,前景一片光明。
数通畅联专注于企业IT架构、SOA综合集成、数据治理分析领域,感谢您的阅读与关注。
在信息化、互联网+时代,它们分属不同的技术研发方向领域。
数据处理分析决策领域,称发展由局部孤立数据到大数据;通信网络链接领域,称发展由互联网到物联网;应用软件技术服务领域,称发展由终端应用到云集约分布应用。显然,数字信息技术发展终将殊途同归。
物联网、大数据、云应用服务、人工智能、区块链,它们是紧密关联的,物联网生成大数据,对大数据的处理分析,需要集约多进程的分布式应用服务;基于大数据的综合决策,需要人工智能辅助;数据的真实性、安全性,需要区块链保障。
产业数字化转型,全部产业将升维到数字产业;再进行全数智产业集约优化生态闭环,则所有异构平台,必将集约融合为”物联网大数据云服务”平台,实现大一统。
在物联网系中,纲是智慧中国、智慧政府、智慧城市;节点是云平台,分布式应用服务、分布式存储、分布式记帐;目是连接万物的末梢(移动、固定)终端,目终端通过授权链接,可访问纲和节点服务。
首先,分属三个不同的行业,但都属于大平台级别。相互独立,却又相互交融;
其次,简单点理解大数据以内容为主,提练数据为当下或未来服务;物联网以物为主,万物互联为核心;云以存储/集中服务为主,民主集中制是特色。
但是这三者相互关联。物联网可以产生大数据,要用云平台;同时,大数据也对物联网和云平台的应用也有支撑作用。
最后,当这三者发展到均衡一定程度,人工智能化才能真正实现。
万物互联给人感觉庞大且有距离感。但其实,它离你并不遥远:街头密集的共享单车、越来越多的智能穿戴和智能家居……当物联网应用于生活的方方面面,包括移动医疗、工业物联网、智能零售、环境监测、资产跟踪等等,它将极大地方便我们的生活、提高工作效率
工业互联网不是工业的互联网,而是工业互联的网。它是把工业生产过程中的人、数据和机器连接起来,使工业生产流程数字化、自动化、智能化和网络化,实现数据的流通,提升生产效率、降低生产成本。
从技术架构层面看,工业互联网包含设备层、网络层、平台层、软件层、应用层以及整体的工业安全体系。与传统互联网相比,多了一个设备层。
工业物联网是工业互联网中的「基建」,它连接了设备层和网络层,为平台层、软件层和应用层奠定了坚实的基础。设备层又包含边缘层,总体上,工业物联网涵盖了云计算、网络、边缘计算和终端,自下而上打通工业互联网中的关键数据流。
工业物联网从架构上分为感知层、通信层、平台层和应用层。工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。
所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。目前,很多公司正在积极布局智能制造和工业物联网发展战略。问题是,这些企业是会共同推进两个战略的发展还是分开推进呢?我相信他们会共同推进,但我也可以理解那些把他们看作是分开的人。
在我们讨论这个话题之前,先让我先定义一下术语,因为有很多关于这个的争论。
智能制造:在工厂和整个价值链内实现业务、物理和数字流程的智能化、实时协调和优化。基于所有可用的信息,资源和流程将实现自动化、集成化、被监控和持续评估。(根据MESA International ,MES国际联合会定义)
IIoT:在工业(如组件、产品、产品运输和设备)中使用的物理对象(“物”)中嵌入电子、软件、传感器组成的网络,这个网络能够使物理对象通过互联网协议(IP)收集数据并与控制系统、业务流程和分析交换数据。(根据维基百科“IoT”修改)
现在回到我们的核心问题:两个战略是要共同推进还是分开推进呢?很明显,目前还没有定论。下面是这些观点的一些背景:
工业互联网协会(IIC)说:"通过自动化工业设备和系统之间的通信,IIoT提高了整个工厂的效率,使其更加智能化,"我同意。我相信,IIoT是智能制造的一项有利技术,它的进步将推动智能制造的发展。同样,随着智能制造超越概念,进入公司正在执行的项目,制造商和他们的解决方案提供者将改进支持这些项目的IIoT技术。这两个很可能会被共同推进。
另外:并不是每个人都同意。在最近的MESA调查中,超过三分之一的制造商报告说他们不相信智能制造包括IIoT(参见上图)。我明白这个观点,因为智能制造有很多途径。实际上,IIoT可以在一些可能定义智能制造的正常边界之外使用。
与智能制造相比,IIoT确实发展可能会更快,因为解决整个价值链上的项目是一个超出公司内部的挑战。像通用动力公司、通用磨坊和通用汽车这样的大公司可以展示他们的力量,并帮助推动特定行业的智能制造行动,但是IIoT项目可以取得很大的进展,并在公司的内部提供许多好处。如果消费者市场上的物联网计划提高了工厂内部的期望门槛,那么实现类似的互联互通、数据访问、控制和分析能力也会有压力。
此外,生产仍将涉及人员,以及未配备IIoT的设备和产品。对于一些智能制造方案,IIoT没有也不可能是商业案例,这些情景可能关注人员和价值链流程。
推动第四次工业革命的是什么?
有些人会认为智能制造或IIoT可能导致第四次工业革命。我也有一个观点:智能制造是这场革命的基础,而IIoT不是。即使IIoT的发展比智能制造快得多,我也不认为它足以让生产企业进入下一个生产力阶段。
那么IIoT缺少了什么来推动第四次工业革命呢?首先是企业环境。智能制造不仅整合了工厂或智能连接工厂,还包括智能连接的供应链和贯穿产品生命周期的数字线程。与其他工业革命一样,技术的转变--比如IIoT--必须与新的流程和人们工作的方式协同工作,以达到我们在第四次工业革命中所追求的生产力水平的提高。
IIoT是一项基础技术,但它只做它所做的事情--在"事物"之间创建通信,以便更容易地获取数据和分析。第四次工业革命需要许多其他技术和工艺。其中一些将针对一件设备或生产过程;其他人将在工厂、企业或价值网络上工作。
真正让商界人士兴奋的是,当新技术和新方法将它们整合在一起时,就会扰乱市场,并让公司提供新的服务和与新产品所能产生的数字数据绑定的新价值。例如,基于IoT的智能产品可以向工程师和生产者提供关于产品如何在该领域执行的反馈。基于这些数据,我们能提供什么样的新见解和服务?
这就是为什么我认为,要实现第四次工业革命需要更多的时间。它将把IoT和IIoT引入智能制造策略,以创建新的方法来协调和优化整个价值链中的流程,并向客户交付新的服务级别。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)