行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)
定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
物联网行业发展前景及趋势分析
1、产业物联网占比逐渐上升
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、市场规模不断增大
目前,物联网在全球呈现快速发展趋势,欧、美、日、韩等国均将物联网作为重要战略新兴产业推进,但在繁荣景象背后却仍存在着众多阻碍发展的因素。其中核心标准的缺失,尤其是作为顶层设计的物联网参考架构等基础标准目前仍处于空白,基于争夺物联网产业主导权,各国对国际标准方面的竞争亦日趋白热化。
新冠疫情对于物联网行业来说犹如达摩利斯之剑,一方面疫情导致全球技术供应链出现一定的停滞期,另一方面疫情助推中国物联网的渗透。2020年无人工厂、无人配送、无人零售、远程教学、远程医疗等“无接触经济”的爆发均离不开物联网技术的支撑。综合多方面的情况分析,前瞻认为未来5年中国物联网的发展将保持高速增长,到2026年市场规模超过6万亿元。
以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
2019年全球ICT产业关键字,聚焦「智慧、速度与创新」。创新技术如人工智慧、延展实境(XR)、区块链、数位分身(DigitalTwin)持续出笼,尤其人工智慧加速晶片及量子电脑的发展,伴随5G商转,势必带动产业跳跃式前进。既然聚焦「虚实整合、运算科技、人机互动」三大主轴,2019年COMPUTEX,全球IP矽智财授权领导厂Arm受邀出席《COMPUTEX论坛》、《InnoVEX论坛》主题演讲。Arm在COMPUTEX揭示全面运算(TotalCompute)主张,为5G时代提供更符合更多使用情境(usecase)的整体运算方案,并展现强大生态系能量。
Arm在COMPUTEX2019有哪些亮点展示?瘾科技带你浏览四大解决方案 亮点一:物联网平台回应Arm的目标在2035年打造达一兆台连网装置,为了让连网装置深度沟通,Arm针对IoT平台的生态系,近年接续推出「DesignStart」、「Pelion」及「Neoverse」等相关计画。今年COMPUTEX,Arm展示Pelion这项混合环境的端到端联网连接、装置和资料管理平台方案。Pelion特色在于建构3A情境,「任何装置、任何资料、任何云端」(Anvice,Anydata,Anycloud),管理任何种类的连网装置与连接,应付任何内外部不同类型的资料,连接任何公有、私有及混合云端。
换言之,Pelion平台让企业在安全环境下,管理各项物联网装置,无限制连结任何规模的资料。COMPUTEX也展示,Arm收购TreasureData后,借助巨量资料技术能力,Pelion平台对资料流程进行融合,让企业用户以高效、更安全的技术部署、连接和更新连网装置,顺利走入物联网的资料世界。
亮点二:AI机器学习联网装置与数据资料爆发成长,人工智慧的机器学习应用,逐渐从云端转移至终端。为了把机器学习技术放在边缘装置发挥所长,Arm针对机器学习的晶片应用进而打造全新处理器。延续Arm在CPU具备的可编程优势,以及GPU数据处理压缩能力和高吞吐量的设计特点,将其整合至机器学习晶片设计之中。针对机器学习热潮,Arm推出「ProjectTrillium」机器学习运算平台支持各种AI应用程序,在功能性与可扩展性方面,能实现更快机器学习效率。根据统计,目前ProjectTrillium平台的学习数据吞吐量,比起过去CPU、GPU协同作业的机器学习效率,已经达2~4倍以上,效能也优于传统DSP的可编程逻辑。
换言之,ProjectTrillium是一个异质的ML运算平台,平台架构包括ArmML处理器、开放原始码ArmNN软体框架,目前搭载于超过25亿台Android装置。Arm针对ML处理器进行强化,包括超过两倍能源效率,达到每瓦5兆次运算(TOPs/W)、记忆体压缩技术提升达三倍,以及提升至高达八核心的次世代峰值效能,与每秒最高32兆次运算(TOP/s)。
随着机器学习需求愈来愈高,开发人员更渴望利用系统上专属神经处理器(NPU)的优势。Arm机器学习ML处理器提供同级最优化的能耗效率,并有强大的软体生态系统支援,让整个生态系统的AI效能极大化。
▲Arm示范如何在装置上快速的执行机器学习功能,挑战人的记忆,和装置相比,看谁能先辨出不同的图像。
亮点三:AR/VR装置前几年开始流行的AR、VR装置,过去最大挑战来自虚拟视觉的稳定度。对此,Arm因应5G科技演进推出多款全新高阶IP套件,其中Mali-D77DPU显示器即是聚焦扩增实境、虚拟实境所需的内容所打造,让虚拟实境更加真实。Mali-D77是Mali-D71显示处理器更新版,最高可对应3K解析度与120fps更新率,虚拟视觉影像得以更稳定呈现。全新的硬体功能,加速头戴式显示器的虚拟实境运算,实现更小、更轻、更舒适的VR装置部署。
▲在COMPUTEX展示OculusQuest的VR头盔,提供高效能、无线,摆脱传统VR装置需要连接线的牵绊,创造VR装置新体验。
当然,使用者对AR、VR装置的期待除了影像稳定,在沉浸式体验方面,还包含更轻量、不受线材影响以及更顺畅的效能。Mali-D77其他功能表现在镜头失真校正(LensDistortionCorrection)、色差校正(ChromaticAberrationCorrection)、非同步时间扭曲(AsynchronousTimewarp),对应更清晰、更真实影像,还能降低配戴者头晕情况。除此之外,Mali-D77显示处理器IP,3K120虚拟实境效能,硬体节省VR作业负载4成以上系统频宽,以及12%功耗表现。Arm表示,为了让VR更为普及,在全球达到数十亿台装置的长期目标,Mali-D77解决现阶段显示技术的挑战,为VR产业迎向下一个新世代。
亮点四:车用Arm在今年COMPUTEX展示的第四个亮点,聚焦在汽车应用。Arm在车用方面扮演重要角色,因其牵涉稳定与安全,尤其ADAS与自动驾驶需要顾虑的层级更是重要。对此,Arm针对车载安全推出ArmSafetyReady计画,同时也包括针对自驾车的7nm制程最佳化处理器架构Cortex-A76AE,借由整合Split-Lock提供车载所需的安全性。
换言之,ArmSafetyready车用安全计画涵盖Arm既有、新型与未来的全方位车载计画,从系统性流程到研发,且通过ISO26262与IEC61508标准,一站式提供软体、元件、工具、认证及标准等资源,确保加入此计画的合作伙伴其SoC与系统,皆达到最高安全层级。
今年COMPUTEX也展示基于Arm的DMS(DriverMonitoringSystem)驾驶监控系统产品。DMS是采用ArmCortex-A7所支援的深度学习NN模型,由TEEAILab所开发。这套DMS系统展示在CortexA7上运行AI/ML以实现驱动程序状态监视功能。例如针对驾驶员闭眼、打哈欠侧视、俯视、打电话和吸烟等行为进行迅速检测,并发出音频以提醒驾驶。Arm在智慧驾驶领域,也展开AutomotiveEnhancedforFunctionalSafety计画,将推出首款多情绪执行处理器,以强化新世代安全驾驶体验。
▲COMPUTEX展会上也展示Arm在智慧驾驶领域的成果(图右),情绪执行处理器问世将有助驾驶安全。
聚焦未来世界,打造创新体验Arm在COMPUTEX2019展会中,展现新世代运算领域的创新技术与相关应用。除了上述相关亮点,也聚焦面向未来2030年的使用情境。Arm拥有全面软体开发框架,包含ArmIP、ArmNN、ArmComputeLibrary及ArmDevelopmentStudios,透过生态系统合作帮助开发人员更快采用、更快上市,透过机器学习软体优化,有效扩展硬体效能。
想像未来的世界,5G传输、机器学习、终端运算可能已经成为我们生活的日常,而产业之间将呈现万物联网的庞大生态系。对此,Arm将持续展现其领先技术优势,携手物联网超级战队掌握下一波科技浪潮。
筒单地回答吧:我小时侯那年七八岁,我家自留地,和我四姨叔邻畔种地,同时都种的谷孑,人家的谷苗比我家的谷苗明显区别,人家谷苗黑绿翠,我家的谷苗黄没有长势,我回家问父亲,父亲说:人家耕地比我们深,种孑一样。密度合理,精耕细作,我们工夫不如人家,人工智能机器人不适应,循序渐近的过程,有些农作物需要大量的人工才能丰收,农村改革应地区制宜。人工智能在各行各业里面的应用很广泛,在农业中同样也有很大的作用。
1气象预报
未来农业天气预报将会更加准确,ai广泛应用于农林牧渔业的天气预测,更加准时、准确,还可以针对天气状况提供科学的解决措施。
2农产品市场需求分析
基于大数据进行未来市场行情预测,减少市场产生因产品数量、地域、时间而供求不统一的现象。比如基于往年的市场行情等预测明年需要种植的农作物。
3农业灾害预测、减灾抗灾
分析可能会出现的自然灾害,比如蝗灾,火灾,台风及病虫害等。并提出科学的建在救灾方案,减少损失。
4农作物生长检测
检测作物或养殖畜牧业的动物生长情况,智能提供养殖方案。并检测可能出现的情况。减少人工干预。
5农业育种
用ai智能分析获取最佳育种方案,缩短育种时间,减少育种成本,提高效率、
6农业辅助
智能播种,施肥,喷药,收获等
随着我们进入机器学习的新技术时代,人工智能和农业正变得密不可分。它带来了令人兴奋的无限可能性:从种子发芽,到保持作物的完整性,再到实际的收获过程。
联合国估计,到2050年,全球人口将增加到97亿人以上,那时很多饥饿的人口需要养活。相比于人口的大量增长,耕地面积只会增加4%。因此,解决办法不是扩大农田来种植庄稼和饲养牲畜,而是更有效地利用现有的土地。
目前,全球20%的人口受雇于农业综合企业,这是一个价值3万亿美元的产业。但是我们如何进行这个变换呢?答案可以在人工智能和农业的交汇处找到。
1人工智能选种
如果我们想要有最好的作物,那么这一切都取决于我们种植的种子的基因。Monsanto公司现在正在使用人工智能扫描具有最理想特性的种子的DNA序列。
农民将不再需要投入时间和精力来进行种子的交叉变异实验,因为现在有计算机程序可以为他们进行这种分析。
种子本身有发芽率,或“种子休眠”,这意味着它们只有在特定条件下才会发芽和开始生长。研究人员可以利用人工智能找出种子发芽的最佳条件,如温度和湿度水平,使作物能够比预期的更早开始生长。这减少了等待时间,并可以使作物全年种植。
机器学习支持的图像分析的新应用,加上移动成像的自动化控制,可以测试种子的表型,以确定使用哪种种子最好。
这方面的实例可以在种子发芽技术中找到,该技术已经用于测试番茄和玉米等作物。
2通过人工智能反馈进行土壤管理
在世界各地种植农作物时,土壤营养也会发挥作用。通过特殊的算法,深度学习被带到这里的最前沿,这些算法可以帮助监测种植前和生长过程中土壤的 健康 状况
土壤退化和侵蚀也是影响农作物生长的重要因素,但这两个问题都可以用人工智能解决,就像PEAT公司在德国做过的实验那样。他们开发了一种能分析土壤缺陷的Plantix。加上无人机的视觉感知能力,它们可以探测到作物的生长区域,这些作物可能生长在有缺陷的土壤中,或会遭受区域里疾病和害虫的侵袭。
它通过对叶子成像,然后通过一个软件运行,这个软件可以区分正常和不 健康 的生长模式。更重要的是,软件会向农民提出解决问题的方法。
CropDiagnosis是另一个类似的应用程序,它可以用无人机扫描整个领域,并且评估土壤中灌溉和氮含量水平。
在美国,Trace Genomics也在追随他们的脚步,采用基于人工智能的技术来研究土壤弱点和作物缺陷。
3人工智能管理灌溉和用水
植物要想正常生长,就需要持续不断的水供应。在世界上雨水和淡水稀少或不可靠的地区,种植作物尤其困难。就像你的花园洒水器可以设置定时器一样,现代的人工智能灌溉方法比这更进一步。
他们可以通过农业环境中的机器学习技术实时跟踪土壤中的水分含量,从而准确地知道何时向作物提供水,以及如何合理节约水的消耗。这意味着农民有更多时间来做其他的重要工作,而不必费心亲自灌溉作物。
据估计,地球上约70%的淡水供应用于农业生产,因此更有效地管理淡水供应将对如何利用这一宝贵资源产生连锁反应。
4基于图像的养分和肥料使用解决方案
土壤本身并不总是为作物提供最好的营养,农民必须定期轮作。在过去,肥料是植物的主要肥料,但农业现代化带来了大量新的和创新的施肥方案。
农民花大量时间在地里以氮肥的形式为作物提供必要的营养,然而人工智能现在已经成为这个领域的主要参与者。
现代人工智能解决方案不仅可以检测出需要多少肥料才能减少浪费,而且还有可用的硬件来辅助运输过程。其中一个解决方案就是Rowbot。
这是一台基于图像的机器,它在作物生长期间收集植物数据,只向最需要化肥的作物提供肥料,从而提高原本收成较低的作物的产量。
由Bosch开发的Plantect是另一个智能的人工智能套件,它可以帮助农场从确定正确的阳光和湿度水平到无缝监控一切,并与物联网协同工作。
5人工智能可以预测天气状况
从潮湿的英格兰到太阳炙烤下的加利福尼亚,再到干旱肆虐的索马里,天气状况极大地影响了农作物的生长。
一季不下雨意味着成千上万的人在几个月内都会挨饿。然而,人工智能现在可以与机器学习相关的特殊算法结合使用——再加上卫星信息——以确保无论天气如何,农作物都不会歉收。
美国一家名为aWhere的公司正在利用这种人工智能技术来预测天气模式,使农民能够提前采取正确的措施。
它能测量一切:从太阳辐射到降水、温度推测和风速,以提供有关潜在作物生长和产量的准确数据。
例如,如果你知道两天后会有大量降雨,就不需要用昂贵的灌溉用水。或者,如果你知道接下来的几天会带来高温,那么你可以确保作物在早晨早些时候浇水,为温度上升做好准备,减少土壤蒸发。
这两者都可以被编程到AI机器解决方案中,当软件和硬件结合在一起时,农业技术可以提前为农户采取行动。
6创新的机器视觉来识别作物问题
一旦作物生长,就有必要保护它们的生长不受疾病和虫害的侵蚀。在这方面,人工智能也可以提供帮助。
你不仅可以在人工智能控制机器和条件的温室里种植作物,而且户外作物也可以从技术投入中受益。
跨国农业企业John Deere现在收购了Blue River Technology,作为其人工智能武器库的一部分。他们共同开发了一种“看和喷”的方法,利用人工智能机器学习和计算机视觉相结合,找出影响作物生长的杂草,然后将它们清除。
该公司发言人John May表示:“机器学习是Deere未来的一项重要能力,并且它认识到技术对我们客户的重要性。”
“看和喷”方法意味着,他们现在可以针对特定的杂草,提高作物产量,而不是以高昂的成本喷洒整株作物,而且还会伴随着对的 健康 影响。
7用人工智能技术监测杂草和害虫问题
人工智能传感器也正在开发中,利用图像传感技术来检测植物叶片的病害特征。这与通过人工智能机器进行的彩色成像有关。人工智能机器能够区分 健康 和患病的叶子,然后通过与机器人集成来去除它们。
微软开发人员也在使用同样的技术,他们合作开发了一个害虫预测界面,可以识别破坏农作物的昆虫。在很短的时间内,这将包括诊断和消灭害虫的实际远程机器视觉。
这项技术最多可以减少80%的化学物质的使用,而花在除草剂上的钱会减少90%。
杂草控制对农民来说非常重要,因为目前约有250个品种对现代除草剂具有抗药性,仅大豆和玉米作物上的杂草生长每年就造成400多亿美元的损失。
8预测正确的收获时间
几个世纪以来,农民们一直在考虑天气状况和作物的总体状况等因素,决定最佳收割时间
由于成像技术反馈给远程学习软件,人工智能现在带来了一个决定作物是否可以采摘的新元素。
该技术可以用白色和UVA型灯分析水果的成熟度,这意味着农民可以选择只采摘最成熟的水果或蔬菜,而把其他未成熟的水果留一段时间。
这可以在温室里小规模地进行,也可以在更大的规模上进行,使用直升机和无人机可以构建一个整体的田间管理地图。
9机械收割方法
现在让我们看看食物是如何挑选的。越来越多的农场工人不愿意日复一日地做重复性的、季节性的采摘水果和蔬菜的工作,预计在2014年至2024年间,这一比例将降至6%。
我们面临着这样的事实上:由于工人短缺,熟透的水果往往无法采摘,这意味着利润的损失。
根据农业综合企业的性质,一个农场大约40%的利润用于体力劳动和工资。
人工智能可以大幅减少这一数字,因为一旦购买了机器,它们就会随着时间的推移为自己买单。
有两个机器收割的例子来自Harvest CROO Robotics,它创造了采摘成熟草莓的硬件,以及拥有可以收割苹果园的机器的丰富技术。这种类型的人工智能将感知和动作结合在一起,因此自主机器可以看到需要收获什么,然后继续执行收获的动作。
10农场机器接受人工智能升级
现代农业往往使用各种各样的机器来保持生产效率。
从拖拉机和收割机到四轴脚踏车和运货卡车,机器是农业的重要组成部分,但是机器故障和持续的维护是一个严重但经常被忽视的影响利润的问题。像 汽车 这样的普通道路交通工具,现在正在用一组非同寻常的电子产品进行制造,从轮胎压力到油位,这些电子产品可以提供各种反馈。
未来的农业机械也将采用同样先进的监测系统。与其等着拖拉机在田里抛锚,还不如提前警告农民任何故障。与物联网相结合,这些物品甚至可以在问题出现之前就预先提醒和维修。
11人工智能无人机的崛起
展望未来,无人机已经在许多方面得到了应用,要使现有的无人机适应农业生产,所需要的只是硬件和软件的集成,这为这些飞行器提供了额外的用途。
到2027年,农业无人机的市场份额预计将接近5亿。无人驾驶拖拉机也将成为现实,在没有真人指导的情况下,通过编程使其以一定的速度行驶,同时以有效的方式执行特定任务。
12来自数据库的云共享信息可以帮助农民
由于“Alexa”类型的系统为农民的所有问题提供了解决方案,人工智能可以成为农民最好的朋友。
建立农业的知识数据库,并能向其询问从动物疾病到土壤质量的一切问题。这样的基础可以学习正确的解决方案和回答问题,然后可以有效地与业务中的其他人共享。
当农业在很大程度上实现自动化时,数据共享无疑将具有重要性。训练系统需要数据,特别是人工智能算法的数据非常有价值。
近年来,农业数据联盟(Agricultural Data Coalition)已成立,旨在帮助农民掌握信息和数据处理技术,以便从研究人员到农场主、农作物买家和保险公司等所有人都能共同努力,提高产量,从而提高所有人的利润。
得益于人工智能技术,总体产量得以提高,将人工智能应用于农业的最终目标是提高每平方英尺的作物产量。
产量的提高主要是通过模仿人类认知的算法实现的,在分析大数据时,将农业中的机器学习技术带到最前沿,并利用它做出有效的决策。这些数学人工智能公式可以通过决定作物从播种到收获的最佳 *** 作过程来帮助提高作物产量。
人工智能解决方案在农业领域的技术有很多,而且具有几乎无限的潜力。农业传感器可以看到外形,识别语音命令和 *** 作视觉感知能力来收集所需的数据。
信息管理系统控制收集的数据,并允许人工智能软件基于深度学习技术和机器学习通过预测分析做出决策。这些数据可以用于专门为农业综合企业制造的硬件,比如自动无人机和自动驾驶 汽车 。
充分利用收集到的数据,能为农民提供最好的服务。农业领域的人工智能解决方案要想在这一领域起飞,就需要在农业实践中集成人工智能的多方优势。
人工智能在各行各业里面的应用很广泛,在农业中同样也有很大的作用。
1气象预报
未来农业天气预报将会更加准确,ai广泛应用于农林牧渔业的天气预测,更加准时、准确,还可以针对天气状况提供科学的解决措施。
2农产品市场需求分析
基于大数据进行未来市场行情预测,减少市场产生因产品数量、地域、时间而供求不统一的现象。比如基于往年的市场行情等预测明年需要种植的农作物。
3农业灾害预测、减灾抗灾
分析可能会出现的自然灾害,比如蝗灾,火灾,台风及病虫害等。并提出科学的建在救灾方案,减少损失。
4农作物生长检测
检测作物或养殖畜牧业的动物生长情况,智能提供养殖方案。并检测可能出现的情况。减少人工干预。
5农业育种
用ai智能分析获取最佳育种方案,缩短育种时间,减少育种成本,提高效率、
6农业辅助
智能播种,施肥,喷药,收获等
农业智能势不可挡!
人工智能应用于农业是大势所趋,是方向,当然全面应用也许比较有个比较漫长的过程。养猪行业是农业大产业中最具标准化最具规模的行业,我认为人工智能应用于农业最先应该从养猪行业获得突破,事实现在京东、 科技 影子、猪场管家等都在这方面已经 探索 并有着应用
人工智能已经实现,比如无人机喷洒农药,自动售米机等。未来人工智能会广泛应用!从生产到销售。
人工智能在农业该如何发展,我来讲几点我的想法。
1种植户用人工智能可以通过网络、感应器掌握田地土壤信息,配合无人机播种、喷水、喷农药和撒肥料等。
2养殖户用人工智能可以通过监控、其他设备,监控鱼塘、养猪场等。
3人工智能在农村还可以陪伴老人和小孩,照顾他们,有意外可以随时报警,在外打工的年轻人可以通过人工智能掌控家里一切。
希望以上的回答可以帮上你。 从1956年到2018年,人工智能技术已经62岁,并且正在为逐渐衰落的传统制造业带来新的生机。阿里巴巴副总裁、iDST(数据科学与技术研究院)副院长华先胜曾表示,没有通用的AI技术,只有和行业结合才有未来。而AI+制造业拥有巨大的发展潜力,是未来智能制造、产业升级的主战场。
“AI+制造”之内涵
AI+制造属于智能制造的范畴。那么什么是智能制造呢?虽然到目前为止,国际和国内尚且没有关于智能制造的准确定义,但工信部的专家给出了一个比较全面的描述性定义:智能制造是基于新一代信息技术,贯穿设计、生产、管理、服务等制造活动各个环节,具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的总称。2018年初,周济、李培根、周艳红等人在中国工程院院刊《Engineering》提出“走向新一代智能制造”的观点。文章指出智能制造是一个不断演进发展的大概念,可归纳为三个基本范式:数字化制造、数字化网络化制造、数字化网络化智能化制造——新一代智能制造。该演进对应的是从原来传统制造的“人-物理”二元系统向新一代智能制造“人-信息-物理”三元系统进化的过程(如图1,2所示)。不言而喻,AI+制造就是新一代智能制造,它全面融合了数字化、网络化和智能化;它追求的是人机协同,而不是简单地代替人类劳动。中国工程院院士潘云鹤在2018年10月29-31日举办的中国·佛山人工智能与智能制造国际大会发表题为《人工智能20及其技术端倪》演讲时,同样表示: “很多人工智能科学家已经认识到,最佳的方法不是用计算机去模拟人的全部智能,而是把计算机最擅长的智能和人最擅长的智能联合在一起,形成一个人机融合的智能系统来为人类服务。”
图1 智能制造三个基本范式演进
图2 从“人-物理系统”到新一代“人-信息-物理系统”
“AI+制造”发展现状
为了发展智能制造,加快我国智能制造技术产业化,国家先后颁布了一系列“AI+制造”相关的政策:
(一)《智能制造2025计划》指出智能制造是新一轮科技革命的核心,也是制造业信息化、网络化、智能化的主攻方向。
(二)2017年12月,工信部发布的《促进新一代人工智能产业发展三年行动计划(2018-2020年)》中,提及神话发展只能制造,鼓励新一代人工智能技术在工业领域各环节的探索应用,提升智能制造关键技术的创新能力,培育推广智能制造新模式。
(三)2018年3月发布的《关于做好2018年工业质量品牌建设工作的通知》中指出组织开展智能制造新模式应用,推进产学研协同发展,推动人工智能等新技术与制造技术深度融合,突破一批关键技术装备与核心工业软件。
同时,全球制造巨头为了抢占人工智能先机,在“AI+制造业”的卡位战也在激烈展开。
海尔通过互联网工厂建立以用户为中心的智能生态圈。截至目前,海尔已建成八大互联工厂,能够为行业生产制造环节提供先进样本支持。同时,海尔牵头成立了行业第一家工业智能研究院,以及全球家电业首个智能制造创新联盟,向整个行业输出制造的标准和模式。
西门子则押宝“数字化双胞胎模型”及Teamcenter协作平台。数字化技术Teamcenter作为跨专业、跨项目阶段和计划的集成化的PLM解决方案,通过产品全生命周期管理的数据管理平台和产品生命周期管理平台,将产品的数据进行管理或者转换成单一来源环境,在此环境下将数据进行数字化,制作一个数字化双胞胎,与生产工艺、制造流程双胞胎,以及制造的设备、工厂的数字化双胞胎,共同形成一套全方位的数字化解决方案。
在智能制造领域,三星主要利用IoT(物联网)、VR(虚拟现实技术)、AR(增强现实技术)、大数据、AI(人工智能)等尖端技术及智能制造解决方案,通过综合管制中心,同时管控着三星遍布全球15个国家的30个工厂生产现况,从而实现一个中心管控全球的“4M+1E”方案(MAN、MACHINE、MATERIAL、METHOD和ENVIRONMENT)。通过这样的技术,可以监控工厂内设备工作、停止及关闭状态,并由此检查每个设备的启动效率。
这些案例向我们清晰地展示出:制造巨头们正在奋力把AI集成到各自关键要素,以期借助“AI+制造”的模式重塑自身在制造业的全球竞争优势,为未来智能制造战争储备d药。
“AI+制造”应用场景
随着人工智能技术在生活领域的快速传播,越来越多来自不同领域的学者及科研人员开始尝试着将制造领域的专有知识注入到人工智能模型中,并将其与制造业中的典型软件、系统及平台相集成,形成了一系列融合创新技术、产品与模式。
产品研发注智,美国工业设计软件巨头欧特克推出的产品创新软件平台Fusion360和Netfabb3D打印软件集成了人工智能和机器学习模块,能够理解设计师的需求并掌握造型、结构、材料和加工制造等数字化设计生产要素的性能参数,在系统的智能化指引下,设计师只需要设置期望的尺寸、重量及材料等约束条件即可以由系统自主设计出成百上千种可选方案,大大缩短了产品研发周期。
生产制造注智,日本NEC公司推出的机器视觉检测系统可以逐一检测生产线上的产品,从视觉上判别金属、人工树脂、塑胶等多种材质产品的各类缺陷,从而快速侦测出不合格品并指导生产线进行分拣,在降低人工成本的同时提升了出厂产品的合格率。
供应链运营注智,美国多联式运输公司CHRobinson针对卡车货运的运营需求开发了用于预测价格的机器学习模型,模型中既整合了不同路线货运定价的历史数据,又将天气、交通以及社会经济挑战等实时参数加入其中,为每一次货运交易估算出公平的交易价格,在确保运输任务规划合理的前提下实现了企业利润的最大化。
市场营销注智,美国亚马逊商城基于机器学习模型对用户的购买习惯以及产品的属性进行深度学习,形成了全面的知识图谱,在此基础上向用户进行个性化推荐,也向销售商提供相关的生产与营销建议,这项技术的应用使亚马逊增加了10%到30%的附加利润。
产品服务注智,日本的小松机械在生产工程机械的同时也推出了智能化工程(Smart Construction)服务项目。施工过程中,借助该项目可实现由一队无人机测绘三维地图,然后指导智能机器人控制大型工业车辆作业,从而帮助用户大幅提高施工效率和品质。
售后运维注智,电梯厂商蒂森克虏伯公司与微软合作,为其旗下24000名技术工人配备了集成人工智能技术的增强现实眼镜,以便在安装、检修电梯设备的时候能够智能化辅助识别现场并获得技术支持。业务升级后,技术工人的工作效率得以大幅提升,以往需要2小时才能解决的问题通常20分钟就能完成。
可以看到,当前人工智能技术向制造领域的渗透在广度及深度方面均在快速推进,对制造业整体发展的支撑效应初显。但是我们也可以看到,当前产业界对人工智能的融合应用探索大多数还处于探索阶段,对部分环节的应用模式还存在较大争议,多数企业仍处于观望状态,距全行业普及应用还有较大距离。
“AI+制造”在捷普
捷普集团作为一家科技创新驱动型企业,时刻走在科技前列。正如我们的首席执行官Mark Mondello所宣称的那样。我们致力于走在人工智能、增强现实等技术的前沿,并将以此为中心,借助堪比数字化的速度,为日益严苛的消费者市场提供创新产品与解决方案。在AI+制造领域,捷普正在尝试将人工智能技术与增强现实和其他智能技术相结合,为客户打造更加敏捷的制造流程。公司早在2016年汉诺威工业博览会上,便与微软合作推出了预测分析解决方案。我们借助微软的Azure机器学习平台建立一个预测模型来提高生产和质量控制流程的效率。其中最引人注目的当属自动光学检测系统,它可以帮助我们快速识别部件质量是否良好。近期我们又推出了脑波计划(Project Brainwave),旨在完善自身的自动光学检测流程,并利用系统所收集的数据来训练系统检测缺陷产品的能力,确保只将真正有缺陷的部件进行人工检测。相信,在捷普人的努力下,未来我们定可以一睹其风采!
“AI+制造”之未来
总之,“AI+制造”势必会重塑设计、制造、服务等产品全生命周期的各环节及其集成,催生新技术、新产品、新业态、新模式,深刻影响和改变人类的生产结构、生产方式乃至生活方式和思维模式,实现社会生产力的整体跃升。未来,“AI+制造”必将给制造业带来革命性的变化并成为制造业未来发展的核心驱动力。
路漫漫而其修远兮,我们将携手上下而求索!
因为:“AI+制造”,未来超乎你想象!
参考文献:
[1] 走向新一代智能制造,《Engineering》,2018,1
[2]《“AI+制造”最终目的是加快制造业转型升级》,《经济参考报》
[3] 《AI+制造业,才是智能制造、产业升级的主战场》,>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)