物联网对社会发展的哪些方面起到了哪些推动作用?

物联网对社会发展的哪些方面起到了哪些推动作用?,第1张

随着互联网的快速发展,物联网也在阔步前行,与此同时,物联网对人们的影响也越来越大。如今,诸多IT公司都大量投资物联网,以此将人与设备、设备与设备以及系统与系统连接起来。据市场研究机构IDC的研究人员估算,到2020年时,物与物联网的规模将是比人与人联网的规模高26倍。
如今,从人们与周围事物互动的角度来看,物联网已经在影响人们的日常工作。预计将来物联网还将发挥全新的作用,并将改变人们的交通、交流和协作的方式。为什么呢?以下10大原因将对此问题作出更好的解释。
1、让人们路途中的交通更加快捷
人们约有15%的交流时间花费在路上,约有17%的燃料消耗在等待红灯的过程中。道路上的传感器、交通视频摄像头以及道路的中央分隔带都将影响着汽车与驾驶员的“谈话”方式。通过监控行驶速度、交通信号灯、事故以及当前的路况等信息,编入程序的汽车,甚至是道路都将给驾驶员的移动设备发去最有效的行驶路线,从而减少交通时间,节省燃料,并让人们出行更安全。
2、预测产品的稳定性
在产品出货之后,买方与卖方之间的互动往往就会减少,如果双方没有新的交易或产品出现问题,那么买方与卖方之间的交流也几乎没有。预测技术能够监控产品的“稳定性”,从而在问题出现之前就能够及时地发现问题。在倡导消费者为先的时代,一家公司如果掌握了预测产品性能的监控技术,那将意味着这家公司将能够让消费者感到满意,并避免问题的出现。
3、创建更多的工作职位
数字朝代已经开创了IT工作职位的新时代。随着物联网的兴起,云和大数据相关的工作也越来越专业化。市场研究机构Gartner去年就发布报告称,首席数码官(CDO)的数量正在不断上升。Gartner还预测称,到2015年时,约有25%的公司将设立这样的工作职位,以此来管理公司数字,在这样的形势之下,数据专家也将成为公司的重要资产。在获得了大数据和分析的价值之后,人们也将开始看到更多的首席数据科学家、分析师、甚至是客户满意官员等相关的工作职位,甚至还会出现我们目前还没有想到的职位。
4、提供工作能力
社交媒体的崛起已经为人们的交流和团队协作开创了新的时代。像Box、Skype、Jive和Facebook等有价值的社交工具已经吸引了下一代工人的关注。视频交流和图像交流等也将节省人们的交流时间,同时也让这些社交工具与现代化的协调工作系统不分上下。
5、便于将非结构化数据转化成结构化数据
大数据不仅仅是“大”,而是“巨大”。大数据如果被很好地利用的话,那么将会给商业创造更多的价值,特别是在非结构化数据转化成结构化数据之后。分析数据并将这些分析后的数据整合到有用的信息之后,这些数据将会提供消费者、产品行为、市场状况、员工生产力以及更多的相关有用信息。
6、更利于环境保护
如今,感应器已经在一些办公大楼和家庭内运行,但展望未来,这种感应器将成为现代建筑基础设施的必需品。随着用户在房间或卧室内的移动,安装后的动作感应器也将能够按照用户需求打开或关闭灯光设施、加热器、空调、咖啡机和电视机等设备。这些感应器如今已经整合到盲人设备之中,并利用温度和光线等决定打开和关闭相关设备的时长。最终,这种感应器很好地帮助人们节能,节省资金并保护了环境。
7、更好地定位
物联网让位置追踪服务更加简捷。目前,手机、汽车甚至是医院内的联网设备都能够被定位,从而节省有价值的资源。诸多公司将能够很快地追踪他们业务的每一个细节,包括从库存到订单履约情况等,并根据这些位置信息来部署现场服务和员工。工具、工厂和汽车都将能够连接基于位置技术的网络之中,从而让整个链条更加有效。
8、更加智能化的沟通与服务
即使是水冷却机也能够连接到物联网,从而更好地让人们利用更多的时间。例如,水冷却机(或咖啡机、快餐店等)都能够更加智能化的记忆用户的个人偏好,并根据声音和动作激活技术提供相应的服务,甚至是按照用户的需求传递饮料,而不需要用户等候。
9、改变医生工作方式
物联网正在改变医生的工作方式、病人的体验以及整个医患关系。如今,病人的病情必须经过医生当面确诊后才能作出评估。将来,物联网将能够让医生直接读到病人身体相关的数据信息,从而让医生远程实时的掌握病人的信息。
10、根据天气状况安排工作
如今,天气预报主要依赖一些卫星和地面天气监测的结果而进行。将来,大量的感应器将会整合到不同的设备之中,以及空中和地面的数据接受站。使用大数据分析来更好地预测地球状况,将有利于人们更加熟练准确的掌握天气状况和气候变化情况,这样将能够进行更加准确的天气预报,从而让人们更好的规划一周的工作。从全球范围来看,物联网将意味着人们能够更加准确地预测气候变化趋势和自然灾害情况。

《纽约时报》2012年2月13日撰文称,“移动互联网、大数据、智能制造这三个技术结合在一起,正在彻底颠覆我们的生活”。2015年中国有几个概念非常的热火,第一是大众创业、万众创新,第二是工业40,第三个是“互联网+”。
“互联网+”
“互联网+”这个巨大无比的概念里,包含“互联网+金融”、“互联网+零售”等等,而“互联网+制造”就是工业40。中国政府积极推进工业40工程,明确提出“制定‘互联网+’行动计划,推动移动互联网、云计算、大数据、物联网等与现代制造业结合”。国务院提出的“互联网+”的本质是指产业互联网,与早期提出的两化融合,和现在提出的工业40不谋而合。“互联网+”是两化融合的升级版,将推动中国制造向中国创造转型。
中国发展“互联网+制造”具有三方面显著优势:首先,ICT产业领先,在移动通信领域,华为、中兴已经是全球领先的电信设备供应商,中国移动是TD-LTE标准的重要推动者之一,中国企业在该领域已经建立起自己的知识产权武器库。在应用端,中国移动互联企业也已取得全球领先地位;其次,市场前景广阔,2012年中国制造业增加值占全球制造业增加值的224%,居全球第一位,比排名第二的美国高5个百分点,是排名第三的日本的两倍多,而且中国的制造业中劳动密集型企业仍然占据很大份额,未来提升的空间很大;再次,政策支持,从中央到地方政府,已为制造业转型升级制定多项支持计划。2012年7月,国务院印发《“十二五”国家战略性新兴产业发展规划》,将新一代信息技术、高端装备制造、新能源、新材料等七大产业列为国家重点发展的新兴产业,并把物联网、云计算单独列为重大专项工程。“中国制造2025”的出台,更将互联网和制造业的结合作为未来制造业发展的重要方向。
助推“互联网+中国制造”的三个基础分别是:软件一体化、创新生产硬件以及移动互联网。
移动互联网在中国扎根已有十五年的时间,移动互联网过去的所有的资源、资金都已经压在第三产业,所以我们称之为消费互联网。现在移动互联网来到工业、农业。按照马云的说法,互联网成为这个社会的底层基础设施,是水、电、煤和高速公路。那么,随着移动互联网对工业领域、农业领域的颠覆、侵袭,实际上整个移动互联网个人认为它进入深层次的再造,深层次的重新产生效率的一个阶段。这也就是我们中国政府提出“互联网+”的核心要义所在。
实际上在过去的15年当中,我本人不仅见证了自动化到互联网化,还洞察了万物互联所带来的技术变迁。以移动互联网为核心的工业制造业,它影响到整个中国的就业,因为在制造领域里,就业人员达8000万以上,它会影响到军事、国防,影响所有的产品生产、制造、流程、供应链,是对制造业中传统工业生产模式的彻底颠覆,称之为工业革命,是毫不为过的。
看世界工业的演进史会发现,工业革命是经济史上的“奇点”,它推动了一系列的政治、军事、经济和社会变革。工业革命在放大人类力量的过程中形成了一些重要特点,第一次工业革命以蒸汽机与大机械结合为代表,生产效率大幅提高,生产引领消费,延续时间86年;第二次工业革命以内燃机与电气结合为代表,物动人不动,生产线将产品随时送到工作台,工人站定岗位,每人完成单一任务,以“一对多”规模生产,延续时间99年;第三次工业革命以自动化与网络化结合为代表,人动物也动,灵活生产“一对一”产品,到现在已经44年,大概还会延续10到20年。
第四次工业革命以2013年德国汉诺威为起始,基于信息物理融合系统的智能制造诞生。此次新一轮全球工业革命实际上是工业和互联网融合。
美国提出了工业互联网标准,希望关注设备互联、数据分析、以及数据基础上对业务的洞察,他们对传统工业互联网互联互通,其关注点在大数据和云计算。德国提出工业40,拥有强大的机械制造技术,嵌入式以及控制设备的先进设备和能力,德国很关注生产过程智能化和虚拟化的深刻改变。
可以看到,美国工业互联网和德国工业40,实施路径和逻辑相反,但是目标一致。美国是以GE、IBM这些公司为支持,侧重于从软件出发打通硬件;德国是以西门子、库卡、SAP这些公司为主导,希望可以从硬件打通到软件。无论从软到硬,还是从硬到软,两者的目标是一致的,就是实现智能制造,实现移动互联网和工业的融合。
德国政府所定义的德国工业40,由一个信息,一个网络,四大主题、三项集成、八项计划组成的框架结构。德国推出工业40,目的在于重新引导全球制造业潮流、引导第四次工业革命。谁主导了这场工业革命,谁可以制订标准,就可以成为这个革命的王者,可以挽救欧盟的衰落,也可以使德国重新成为世界的霸主。
工业40带来的三大红利领域
第一类,智能工厂。也分为两小类:一是传统的工厂转型成智能工厂;二是一出生就是智能工厂的。

第二类,技术解决方案公司。为制造业提供智能工厂、顶层设计、转型路径图、软硬件一体化设施的“工业40”解决方案公司,总集成商。在“工业40”解决方案里,包括软件、硬件。软件有工业物联网、工业网络安全、工业大数据、云计算平台、MES系统、虚拟现实,人工智能,支持工作的自动化等。硬件有机器人(包括高端的零部件)、传感器、RFID、3D打印,机器视觉,智能物流,也是AGV,PLC,数据采集器,工业交换机等。
实际上中国有400万传统的制造业企业,在未来10年,甚至20年的时间,他们都会逐渐地分步骤地转型成“工业40”工厂。那么,这里就面临一个巨大的市场。
第三类,为中国的制造业转型成“工业40”过程当中的九大技术供应商,包括工业物联网,工业网络安全,工业大数据,云计算平台等等。
工业40的两大目标:智能制造&智能工厂
第一个目标是智能制造,第二个是智能工厂。过去智能制造商有几种说法:第一数字化制造,第二智慧制造,这些表述都不准确。工信部和中国工程院把中国版的工业40的核心目标定义为智能制造,这个词表述非常准确。由智能制造再延伸到具体的工厂而言,就是智能工厂。
智能制造是工业40的核心,作为广义概念,智能制造包含五个方面,实现这五个方面的智能化之后,才可以实现大的智能制造的概念。
智能制造是一个巨系统,工业40就意味着超复杂的巨系统正在形成,车间里面的机器如同智能手机,通过更新 *** 作系统实现功能升级,通过工业APP实现各种功能,通过API不断拓展制造生态系统。
所有的机器、产品、零部件、人员、原材料、所有的研发工具、测试验证平台、虚拟产品和工厂,所有的产品管理、生产管理、运营管理流程,所有的研发、生产、管理、销售员工,各级供应商以及成千上万的客户,都将是这一个系统的重要组成部分,一个基于云端、管道、端到端的信息复杂的体系正在形成。在这里面,车间的机器就像智能手机一样,整个 *** 作会形成一个巨大无比的巨系统。
在智能工厂,德国人希望实现两个概念目标。第一个是机器生产机器,或者说自己生产自己。第二个就是无人工厂,或者是黑灯工厂,或百分百全智能工厂,人与智能机器并存。智能工厂是现代工厂发展的新阶段,是在数字化基础上,利用物联网技术和设备监控技术,来加强信息和服务。

智能工厂有三大特征:第一个特征是信息基础设施高度互联,包括生产设备、机器人、 *** 作人员、物料和成品;第二是制造过程数据具备实时性,生产数据具有平稳的节拍和到达流,数据的存储与处理也具有实时性;第三是可以利用存储的数据从事数据挖掘分析,有自学习功能,还可以改善不优化制造工艺过程。
智能工厂的发展趋势是从柔性化到敏捷化到智能化再到信息化。
工业40的五个特点
互联
互联工业40的核心是连接,当然今天移动互联网的整个世界核心在连接,就像百度一样,在连接人和信息,就像腾讯一样,连接人和人。工业40要把设备、生产线、工厂、供应商、产品和客户紧密地联系在一起。
数据
当传感器无处不在,智能设备无处不在,智能终端无处不在,连接无处不在,必然的结果就是数据无处不在。这些数据包括产品数据、设备数据、研发数据、工业链数据、运营数据、管理数据、销售数据、消费者数据等等。
马云说过,阿里巴巴本质上是一家数据公司,雷军也讲过,小米本质是一家数据公司,从IT到DT,未来整个社会变成大数据的社会。
从工业30到工业40,我提出一个自己的观点,实际上从模具到数据,30的工业是以模具为核心,40的工业是以数据为基础,所有的工厂都会变成数据工厂。
集成
集成是工业40的关键词,也是中国推动两化融合的关键词,工业40将无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施通过CPS形成一个智能网络。
通过这个智能网络,使人与人、人与机器、机器与机器、以及服务于服务之间,能够形成一个互联,从而实现横向、纵向和端到端的高度集成。
创新
工业40的实施过程是制造业创新发展的过程,制造技术、产品、模式、业态、组织等方面的创新,将会层出不穷,从技术创新到产品创新,到模式创新,再到液态创新,最后到组织创新。
转型
对于中国的传统制造业而言,转型实际上是从传统的工厂,从20、30的工厂转型到40的工厂,整个生产形态上,从大规模生产,转向个性化定制。阿里巴巴在三年前就提出,整个制造业的生产流程,从B2B、B2C,转成C2B。他们很敏锐地看到了这样的一个方向,整个生产的过程更加柔性化、个性化、定制化。这是工业40一个非常重要的特征。
工业40是从生产型制造转型成服务型制造。未来生产和服务的界限会更加模糊,按照德国工业40整个框架来说,未来的工厂有可能从集中式生产转成分布式生产。3D打印会快速使用,未来工厂的概念,可能是一个全新的概念,不是我们今天所看到的,有几百人、几千人和设备。未来的工厂可能在客户的客厅,通过3D打印来完成,有可能每一个客户的客厅都是一个生产的车间。
举一个例子,过去生产一台电饭煲,可能在中国的广东生产,然后运到非洲送给客户。但是在未来,工业40时代,这个广东的电饭煲公司只需要电脑设计图纸,传到非洲客户的电脑,客户就可以通过客厅的3D打印机把这台电饭煲打印出来,就意味着客厅已经成为生产车间,所以未来工厂的概念是需要刷新我们的想象的。
工业40是从过去要素驱动向未来的创新驱动。过去是基于人口红利,是基于整个生产的大规模化、定制化,基于汇率低估,破坏环境所导致的要素驱动。未来工业40时代,整个生产制造业向40工厂转型、向创新驱动,科技的含量会变的越来越多,工厂人数在急剧减少,过去蓝领工人会转向黑领工人,是由电脑 *** 作人员在 *** 作整个机器,车间里面会大量使用低成本自动化装备,启用工业机器人,生产过程当中机器可以实现德国40所定义的自己生产自己,机器生产机器。
中国制造2025
由中国政府在2015年初提出,将信息技术与制造技术深度融合的数字化、智能化制造作为今后发展主线,以未来十年为发展周期,目标是驱动制造业转型升级,推动中国由制造业大国向制造业强国转型。
从本质上看,工业互联网是数据流、硬件、软件和智能的交互,由智能设备和网络收集的数据存储之后,利用大数据分析工具进行数据分析和可视化,由此产生智能信息供决策者进行实时判断处理。从工作流程上来看,工业互联网通过三个步骤实现其效能:工业数据的获取、工业数据的分析、调度执行,分别对应于物联网、云计算和大数据、专网通信,这是工业互联网的关键元素。
在我国当前阶段,工业互联网具体表现为将互联网作为当前信息化的核心,推动移动互联网、云计算、大数据、物联网等与现代制造业结合,推动两化融合深度发展。我们认为,工业互联网是2015年政府工作报告中提出的互联网+行动计划的关键部分,即互联网+工业。而中国制造2025也为后续产业升级指明了方向。在人类的发展史上,经历了两次技术的飞跃,分别是工业革命、计算机与互联网革命,我们认为,第三次技术的飞跃将是工业互联网革命。
工业革命:18世纪蒸汽机的发明,开创了以机器代替手工劳动的工业革命时代。工业革命在推进的过程中,分别出现了蒸汽机、内燃机,然后是电报电话和电力。
计算机与互联网革命:1947年,第一款点接触晶体管在贝尔实验室研制成功,标志着计算机与互联网革命的到来。1986年,思科推出第一款多协议路由器产品,市场需求强烈,有力的推动万维网的发展。1981年8月只有不到300台电脑可以连接到互联网,而今天连接互联网的设备则以数十亿计,信息传输的速度和数量大幅增长。然而,目前互联网在工业领域的渗透率还比较低。
工业互联网革命:经过工业革命的发展,大型机器在工业生产中得到了广泛的应用,促进了社会进步和经济大发展。但是机器的性能还没有完全发挥,系统性的效率低下问题比较严重。于是,在过去的十年中,部分企业开始逐步将互联网技术应用到工业生产,发展开放的工业计算机和通信系统。工业互联网将有助于工业系统各层面更好的运转,通过优化检查、维护和修理过程,资产的可靠性和运行的效率得以提高。

大数据技术发展史:大数据的前世今生

今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统BigTable。

你知道,搜索引擎主要就做两件事情,一个是网页抓取,一个是索引构建,而在这个过程中,有大量的数据需要存储和计算。这“三驾马车”其实就是用来解决这个问题的,你从介绍中也能看出来,一个文件系统、一个计算框架、一个数据库系统。

现在你听到分布式、大数据之类的词,肯定一点儿也不陌生。但你要知道,在2004年那会儿,整个互联网还处于懵懂时代,Google发布的论文实在是让业界为之一振,大家恍然大悟,原来还可以这么玩。

因为那个时间段,大多数公司的关注点其实还是聚焦在单机上,在思考如何提升单机的性能,寻找更贵更好的服务器。而Google的思路是部署一个大规模的服务器集群,通过分布式的方式将海量数据存储在这个集群上,然后利用集群上的所有机器进行数据计算。 这样,Google其实不需要买很多很贵的服务器,它只要把这些普通的机器组织到一起,就非常厉害了。

当时的天才程序员,也是Lucene开源项目的创始人Doug Cutting正在开发开源搜索引擎Nutch,阅读了Google的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似GFS和MapReduce的功能。

两年后的2006年,Doug Cutting将这些大数据相关的功能从Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapReduce。

当我们回顾软件开发的历史,包括我们自己开发的软件,你会发现,有的软件在开发出来以后无人问津或者寥寥数人使用,这样的软件其实在所有开发出来的软件中占大多数。而有的软件则可能会开创一个行业,每年创造数百亿美元的价值,创造百万计的就业岗位,这些软件曾经是Windows、Linux、Java,而现在这个名单要加上Hadoop的名字。

如果有时间,你可以简单浏览下Hadoop的代码,这个纯用Java编写的软件其实并没有什么高深的技术难点,使用的也都是一些最基础的编程技巧,也没有什么出奇之处,但是它却给社会带来巨大的影响,甚至带动一场深刻的科技革命,推动了人工智能的发展与进步。

我觉得,我们在做软件开发的时候,也可以多思考一下,我们所开发软件的价值点在哪里?真正需要使用软件实现价值的地方在哪里?你应该关注业务、理解业务,有价值导向,用自己的技术为公司创造真正的价值,进而实现自己的人生价值。而不是整天埋头在需求说明文档里,做一个没有思考的代码机器人。

Hadoop发布之后,Yahoo很快就用了起来。大概又过了一年到了2007年,百度和阿里巴巴也开始使用Hadoop进行大数据存储与计算。

2008年,Hadoop正式成为Apache的顶级项目,后来Doug Cutting本人也成为了Apache基金会的主席。自此,Hadoop作为软件开发领域的一颗明星冉冉升起。

同年,专门运营Hadoop的商业公司Cloudera成立,Hadoop得到进一步的商业支持。

这个时候,Yahoo的一些人觉得用MapReduce进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的 *** 作,Pig经过编译后会生成MapReduce程序,然后在Hadoop上运行。

编写Pig脚本虽然比直接MapReduce编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,比如说你可以写个Select语句进行数据查询,然后Hive会把SQL语句转化成MapReduce的计算程序。

这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive出现后极大程度地降低了Hadoop的使用难度,迅速得到开发者和企业的追捧。据说,2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive。

随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapReduce工作流调度引擎Oozie等。

在Hadoop早期,MapReduce既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由MapReduce自己完成。但是这样不利于资源复用,也使得MapReduce非常臃肿。于是一个新项目启动了,将MapReduce执行引擎和资源调度分离开来,这就是Yarn。2012年,Yarn成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统。

同样是在2012年,UC伯克利AMP实验室(Algorithms、Machine和People的缩写)开发的Spark开始崭露头角。当时AMP实验室的马铁博士发现使用MapReduce进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapReduce每执行一次Map和Reduce计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapReduce主要使用磁盘作为存储介质,而2012年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark一经推出,立即受到业界的追捧,并逐步替代MapReduce在企业应用中的地位。

一般说来,像MapReduce、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算。

而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算。

在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。

除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL曾经在2011年左右非常火爆,涌现出HBase、Cassandra等许多优秀的产品,其中HBase是从Hadoop中分离出来的、基于HDFS的NoSQL系统。

我们回顾软件发展的历史会发现,差不多类似功能的软件,它们出现的时间都非常接近,比如Linux和Windows都是在90年代初出现,Java开发中的各类MVC框架也基本都是同期出现,Android和iOS也是前脚后脚问世。2011年前后,各种NoSQL数据库也是层出不群,我也是在那个时候参与开发了阿里巴巴自己的NoSQL系统。

事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。

但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。

正所谓在历史前进的逻辑中前进,在时代发展的潮流中发展。通俗的说,就是要在风口中飞翔。

上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。

此外,大数据要存入分布式文件系统(HDFS),要有序调度MapReduce和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。

图中的所有这些框架、平台以及相关的算法共同构成了大数据的技术体系,我将会在专栏后面逐个分析,帮你能够对大数据技术原理和应用算法构建起完整的知识体系,进可以专职从事大数据开发,退可以在自己的应用开发中更好地和大数据集成,掌控自己的项目。

希望对您有所帮助!~

智能制造是指具有信息自感知、自决策、自执行等功能的先进制造过程、系统与模式的总称。具体体现在制造过程的各个环节与新一代信息技术的深度融合,如物联网、大数据、云计算、人工智能等。智能制造大体具有四大特征:以智能工厂为载体,以关键制造环节的智能化为核心,以端到端数据流为基础,和以网通互联为支撑。其主要内容包括智能产品、智能生产、智能工厂、智能物流等。目前,急需建立智能制造标准体系,大力推广数字化制造,开发核心工业软件。传统数字化制造、网络化制造、敏捷制造等制造方式的应用与实践对智能制造的发展具有重要支撑作用。
智能制造的发展轨迹:
智能制造源于人工智能的研究。一般认为智能是知识和智力的总和,前者是智能的基础,后者是指获取和运用知识求解的能力。人工智能就是用人工方法在计算机上实现的智能。近半个世纪特别是近20年来,随着产品性能的完善化及其结构的复杂化、精细化,以及功能的多样化,促使产品所包含的设计信息和工艺信息量猛增,随之生产线和生产设备内部的信息流量增加,制造过程和管理工作的信息量也必然剧增,因而促使制造技术发展的热点与前沿,转向了提高制造系统对于爆炸性增长的制造信息处理的能力、效率及规模上。目前,先进的制造设备离开了信息的输入就无法运转,柔性制造系统(FMS)一旦被切断信息来源就会立刻停止工作。专家认为,制造系统正在由原先的能量驱动型转变为信息驱动型,这就要求制造系统不但要具备柔性,而且还要表现出智能,否则是难以处理如此大量而复杂的信息工作量的。其次,瞬息万变的市场需求和激烈竞争的复杂环境,也要求制造系统表现出更高的灵活、敏捷和智能。因此,智能制造越来越受到高度的重视。
纵览全球,虽然总体而言智能制造尚处于概念和实验阶段,但各国政府均将此列入国家发展计划,大力推动实施。
1992年美国执行新技术政策,大力支持被总统称之的关键重大技术(CriticalTechniloty),包括信息技术和新的制造工艺,智能制造技术自在其中,美国政府希望借助此举改造传统工业并启动新产业。
加拿大制定的1994~1998年发展战略计划,认为未来知识密集型产业是驱动全球经济和加拿大经济发展的基础,认为发展和应用智能系统至关重要,并将具体研究项目选择为智能计算机、人机界面、机械传感器、机器人控制、新装置、动态环境下系统集成。
日本1989年提出智能制造系统,且于1994年启动了先进制造国际合作研究项目,包括了公司集成和全球制造、制造知识体系、分布智能系统控制、快速产品实现的分布智能系统技术等。
欧洲联盟的信息技术相关研究有ESPRIT项目,该项目大力资助有市场潜力的信息技术。1994年又启动了新的R&D项目,选择了39项核心技术,其中三项(信息技术、分子生物学和先进制造技术)中均突出了智能制造的位置。
我国80年代末也将“智能模拟”列入国家科技发展规划的主要课题,已在专家系统、模式识别、机器人、汉语机器理解方面取得了一批成果。最近,国家科技部正式提出了“工业智能工程”,作为技术创新计划中创新能力建设的重要组成部分,智能制造将是该项工程中的重要内容。
由此可见,智能制造正在世界范围内兴起,它是制造技术发展,特别是制造信息技术发展的必然,是自动化和集成技术向纵深发展的结果。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13419312.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-01
下一篇 2023-08-01

发表评论

登录后才能评论

评论列表(0条)

保存