此时此刻,鸿蒙时刻——再说华为鸿蒙系统的那些事儿

此时此刻,鸿蒙时刻——再说华为鸿蒙系统的那些事儿,第1张

2021年6月2日,对于华为和很多关心华为的人来说,都是一个重要的日子,因为千呼万唤的华为鸿蒙 *** 作系统(HarmonyOS)正式发布,虽迟但到。就像HDC 2019上鸿蒙初次发布那样,准随着它的争议从未消失,且更随着手机鸿蒙系统的推出在即,有愈演愈烈之势。

在HDC 2019之后,我曾写过一篇《关于华为鸿蒙系统的那些事儿》的文章,此时此刻,我觉得是时候再说说华为鸿蒙系统那些事儿了——虽然我知道,在这个当口,写这样一篇文章很可能给我自己挖一个大坑……

不搞懂Android,你就看不懂鸿蒙

关于鸿蒙的最大争议点无非就是:“HarmonyOS是不是套壳Android?”要说不是,不服气的人肯定大把,要说是,那也一样不得了,那就一层层地说清楚。首先,让我们看看Google手中的Android *** 作系统是怎么回事。

回顾一下Android *** 作系统的起源。它是由知名IT人Andy Rubin于2003年10月成立的Android公司推出的产品,其本身是基于Linux内核开放源代码的 *** 作系统;2005年8月,Google收购了Android公司;2007年11月,Android *** 作系统首次亮相,同时Google宣布以Apache免费开源许可证的授权方式,发布Android的源代码,Google牵头的OHA也正式创立(OHA,Open Handset Alliance,该组织最初由34家手机制造商、软件开发商、电信运营商以及芯片制造商共同组成);2008年9月,Android 10版本正式推出,首款Android智能手机G1发布,宣告了一个新的时代开启。现在,Android *** 作系统已经成为智能手机市场第一大 *** 作系统,也广泛使用在智能手机之外的很多设备上。

Android的起源和开源两个字分不开。是的,Android系统底层所使用的Linux内核,是必须遵照GPL协议进行开源传播的(GPL协议,General Public License,简称GPL,通用性公开许可证)。这个协议中的一项原则就是:确保软件自始至终都以开放源代码形式发布,保护开发成果不被窃取用作商业发售。

因此,采用Linux内核的Android *** 作系统,也不能违反这个协议, 前边提到的Android免费开源许可证授权,就是指Google要向使用该 *** 作系统的智能手机厂商提供开放的源代码,即AOSP(Android Open Source Project),但这部分源代码并不代表“Android” *** 作系统的全部。

Google当初看上Android,可不是想要将这个开源系统作为一个免费的“慈善”项目来推动,而是在意Android这个平台的商业化潜力。于是,在收购了Android系统之后,Google就按自己的设想打造Android系统,即在开源代码的部分之外,基于自家在移动互联网上强大的控制力,把Gmail、Maps、Google Play、YouTube、Chrome这些我们耳熟能详的应用服务整合为GMS(Google Mobile Services)服务包植入,从而形成了这个系统的核心竞争力—— 简单理解Android系统的本质,就是AOSP+GMS的合体。

换句话说,智能手机厂商可以自由使用AOSP提供的免费源代码进行自家 *** 作系统的开发,但想要卖得好,拥有更多的用户,却离不开GMS包含的应用,在Android的商业模式中,Google有一套严格的机制在免费开源与付费授权之间取得平衡的。

之前有数据显示,从2008年~2016年间,Android *** 作系统为Google供贡献了高达310亿美元的营收,而利润更是高达220亿美元,也就是说,数以亿计的搭载Android *** 作系列和GMS服务包的智能硬件们,都成为了Google帝国的现金奶牛。

只是,Google这个庞大的商业帝国,却总有不能企及的地方——中国大陆。早年因为不愿意服从法律监管,Google几乎将整个互联网服务都移出了中国大陆市场,但是Android *** 作系统却随着移动互联网和智能手机的发展,在中国市场壮大。

这里有一个非常有意思的现象:因为Google不能在中国提供服务,中国的智能手机厂商们,早就习惯了自主开发没有GMS,但又包含完整本地化服务的自主UI,但因为要面向全球市场,所以又会在自主UI中保留Google GMS框架,这样就可以在海外市场很方便地接入GMS并激活一系列的服务。

因为GMS服务不能进入中国大陆市场,手机厂商们会在这个基础上接入很多自己的服务,比如应用商店、主题商店、内容、支付、推送等,可是没有Google Play的应用审核机制,国内的软件生态是啥样大家都看到的,到最后手机厂商自己都受不了了,才有了“统一推送联盟”、“软件绿色联盟”之类的组织,且随着国家监管力度的加强,现在已经好多了。

随着Android的市场地位越来越强,Google也开始做一些小动作——毕竟这家公司的口号在2015年就从“Do not be evil”变成了“Do the right thing”。如将一些关键特性和重要代码的更新放入GMS包的版本迭代中,比如部分组件、驱动等,有意拉开Android与AOSP的代数差距,从而凸显自己的地位,进一步强化对Android生态的控制力。所以,为了能让自家的UI能有更强的市场竞争力,智能手机厂商们对Android的魔改从来就没有停止过。

回到华为。2019年5月16日,华为被美国商务部列入实体清单,被视为美国对华为终极打压的开始,首当其冲的就是销往全球的华为新款手机不能再使用Android系统。

是的,华为的确是不能使用Google的Android *** 作系统了,但更具体的描述应该是: “华为不能在自家手机新品中内置GMS服务,但AOSP源代码的使用丝毫不受影响”, 而非那段时间盛传的华为手机从此变砖。但是,无法内置GMS,对于华为手机在全球市场的销售影响是实实在在的,但好在对于系统本身进化影响并不大——现在让我们来到第二个话题:“华为掏空Android。”

华为真的掏空了Android?

华为是否掏空了安卓?这应该是每过一段时间就会被拉出来遛一圈儿的问题。其实在我看来, 答案:是也不是。为什么说不是?因为AOSP还在呢,华为从来没有说过要排斥这个开源项目的,毕竟在这个软件生态上运行着数以百万计的应用,真要把这个掏了,难不成华为要自己做一个全新的软件生态,脑子抽了还差不多。为什么说是?因为华为对Android *** 作系统的改变也是真实的,很多谷歌做的东西,很多都被华为自己的东西替代了。

这个涉及一个主角, 即EMUI,华为自主开发的UI,或者说两个主角也行,EMUI+HMS。 在这其中,现任华为消费者BG软件部总裁王成录王博带领的EMUI团队显得尤其重要,从他2016年加入这个团队之后,EMUI的根本性改变就发生了,用他的话说:“EMUI不仅仅是一个UI,而是一个平台。”EMUI是如何从UI变为平台的呢?简单梳理一下:

-EMUI 4X时代,主要的变化还只是TEE OS(即用于指纹的TustZone)以及SensorHub这样基于硬件功能的模块上;

-EMUI 5X时代,这是一个战略级别的关键版本。解耦Android底层组件,精简各子模块。虚拟机在这个版本也得到了优化,特别涉及了垃圾回收机制(GC)、AOT(运行前编译)、数据库优化(IO并行)等。在这个版本,新的文件系统F2FS(针对闪存推出,大幅度减少文件碎片),还有UltraMemory(即4GB运存达到友商6GB运存效果)的推出,通过对各个Android底层技术模块的深度开发,让EMUI团队敢于将“十八月不卡顿”放到了公众面前,没记错这就是EMUI第一个大争议点出现;

-EMUI 8X时代,人工智能技术加入系统,iAware借着算力,整个系统的后台管理模式更合理,图形引擎得到升级,即半路加入的GPU Turbo,这是EMUI对Android系统全栈图形模块修改的开始,EROFS超级文件系统也在此期间亮相开源社区;

-EMUI 9X时代,也是“Turbo”的时代,GPU Turbo 20、CPU Turbo、LinkTurbo都是在这一代出现的,系统性能继续优化,EROFS正式加入,连接能力得到强化。2019年MWC上,华为“1+8+N”智慧全场景战略首次浮出水面,在这背后,鸿蒙的研发其实已经悄悄进行了不短的时间了;

-EMUI 10X时代,分布式技术、软总线、超级终端这一系列的概念出现了,它在HDC 2019上推出,伴随着它一起发布的就是鸿蒙10,其时还是一个半成品,只能叫 *** 作系统内核。只是因为2019年5月16日的事件,它不得不作为战略产品提前亮相,在推出的时候,鸿蒙就直接宣布将会开源;

-EMUI 11X时代,鸿蒙来到了20版本,但HDC 2020的主角是HMS和AppGallery,不但前边提到的一系列系统底层的能力变化全部被涵盖其中,连Google最引以自傲的营收来源GMS服务、Google Play也被替代了。

看完上边这个简单的梳理,你是不是对本章节开头的那个问题概念更明晰了? 如果说华为掏空了Android,没错,华为EMUI团队觉得Google做得不好的地方,要么魔改,要么就干脆换掉,比如底层连接协议。 特别是在2019年5月16日之后,即EMUI10和11两代,这样的动作愈加突出,幅度也越来越大。

要说华为没有掏空Android,也没错, 因为现在华为完全自主运营的AppGallery应用商店,里边的应用都是基于AOSP规范开发,但又置入了HMS服务的华为版,目的就是为了解决这些应用在没有GMS支持下的消费者体验问题。 毕竟在全球范围内,华为已经积累了7亿多终端用户,在他们换机或是华为解决手机硬件产品问题之前,用户还是要继续使用这些华为手机和软件服务的。

到这里,为什么会有鸿蒙这个东西了应该也有答案了。 “低情商”的说法,它有点像是华为在EMUI进化过程中,用来解决多设备连接协作问题中的“副产品”;“高情商”的说法,它是包涵底层互联协议、芯片能力调用、多设备协同过程中交互界面等全方位解决方案的集合体,高效率的连接(HiLink)、低时延(HiLink)以及微内核(比如LiteOS)是它的三大特点,所以,从软硬件一体化的整体度来说,鸿蒙肯定就是一个全新的 *** 作系统。

因为华为的工程师认为,当前物联网的连接协议太过碎片化,从业厂商开发理解能力参差不齐,所以最后出来的产品也就五花八门,这样的情况,将会严重影响华为“1+8+N”战略的推进效果,“1+8”都是华为自己的好说,“N”怎么办呢?那就交给鸿蒙来解决吧。

这是发布会后宣布的消息:2020年和2021年,华为按计划分两次把HarmonyOS的核心基础能力全部捐献给开放原子开源基金会,由开放原子开源基金会整合其他参与者的贡献,形成 OpenHarmony 开源项目——这和AOSP是不是差不多?这就是为了能让其他有兴趣加入华为“1+8+N”战略的设备制造和服务提供商能更好的理解这个生态系统。在2021年5月18日上海的华为HarmonyOS Connect伙伴峰会上,华为消费者业务AI与智慧全场景业务部副总裁杨海松还提到了鸿蒙的商业模式,包括免费认证服务这些内容,我有整理专访,大家有兴趣也可以了解一下。

在2019年发布鸿蒙10的时候,华为的确是没有那么快的计划将它放在智能手机上。HDC 2019之后对余承东的专访中,他是这样说的:“如果我们确认谷歌不再为华为提供 *** 作系统,那么,我们可以在一夜之间通过升级,将所有的华为手机 *** 作系统的内核更换为鸿蒙,但是我们现在并不打算这么做,因为我们还是希望可以让合作伙伴(主要是指美国公司)的利益最大化。”

但同时,他也说了三个“Ready”,意即华为是可以随时这么做,而在6月2日的发布会上,华为手机的鸿蒙升级计划是何等规模大家也看到了。同样的问题王博早些时候的回答也是:“做 *** 作系统并没有难度,关键是商业模式的问题。”

时间来到2020年5月16日,美国针对华为的终极制裁到来,手机SoC芯片断供,蓬勃发展的华为手机业务随时面临停摆的问题。虽然现在看,华为还可以通过购买第三方公司的芯片,在全球继续推出4G手机产品,但GMS同样不能使用,出货量也会从过去的亿级下降到千万级,决定华为消费者业务未来的“1+8+N”也随之面临巨大的挑战。两年前还是商业模式的问题瞬间就变成生死存亡的关键,HarmonyOS变得意义更加重大,不得不发。

并肩前行的OpenHarmony和HarmonyOS

我相信有了前边两个部分的铺垫,再进入第三个部分,很多人的困惑应该会少很多。华为目前对鸿蒙这个 *** 作系统的定义是: “HarmonyOS是新一代智能终端 *** 作系统,为不同设备的智能化、互联与协同提供了统一的语言” ,它与我们使用的Android这种宏内核系统在思路上有着本质的区别。

宏内核 *** 作系统我们用得很多,电脑上的Windows、手机上Android都是,它最大的特点是设备要装载这个 *** 作系统,就得所有的系统组件全部加包一起装载,不管用不用得着,同时在运行时,系统也会依据内存大小,自动加载组件,响应速度是提升了,但会消耗极大的系统资源。

到2021年我们已经能见到最高达18GB RAM的安卓手机了,而在当前主流的Android 11系统描述中写到:“设备最小运行内存为512MB”。如果设备的运行内存小于512MB,要到不能用最新版本的Android系统,要么就只能用老版本——这也是为什么我们能看到有些车机还在跑Android 44版本……

但是鸿蒙的设想就恰恰是反过来,它从架构设计上就进行了全栈解耦,将庞大的 *** 作系统打散,拆解成很小的颗粒,不同能力的设备只需要按自己的要求来选择相应的模块能力加载即可, 比如鸿蒙系统的前身LiteOS,它最小的体积只有10KB,你能相信它是 *** 作系统么?可它就是!华为认为这是未来物联网时代和必然趋势,巧的是Google也同样这样认为,所以,足足被其孕育了5年的微内核 *** 作系统Fuchsia,刚刚于近日才正式推送,它的目标就是替代Android和ChromeOS,从而更好地适应物联网时代的多样终端和生态。

为了更好地让合作伙伴与开发者适配设备与系统的能力,华为将采用鸿蒙系统的设备从L0~L5做了6个分级,其中从L0~L2这三个级别的设备,要么没有交互界面,要么交互和功能都非常简单,家电、手环就算这种设备,运行内存也非常小,甚至低到KB级,其被定义为瘦终端,它们采用的鸿蒙系统,代码百分之百来自华为,不包含AOSP的任何部分;而L3~L5这三个级别的设备,有交互界面,可应用扩展,手机、平板、笔记本电脑、车机、VR/AR等这些设备就属于富终端的类别,它们采用的鸿蒙系统,就会引用AOSP的部分代码。在这其中,手机无疑是功能最复杂的核心设备,会跑最多的应用,它引用AOSP顺理成章。

所以,这次发布的HarmonyOS是何物就好解释了。 华为软件团队开发出的OpenHarmony开源项目用来构建“1+8+N”生态的基础,在这个基础上,华为手机终端团队加入HMS服务包,提供全套华为服务和连接能力,包括嵌入HMS服务的华为版应用,再加上部分AOSP开源代码,支持Android广泛的应用生态,保证消费者可以继续无障碍地使用已有的应用 ,这就是今天发布的HarmonyOS。看到这里,是不是有人感觉眼熟?

没错,苹果现在M1平台的MacBook就差不多是类似的情况,它既可以运行macOS应用,又可以运行iOS应用,而HarmonyOS呢,既可以运行原来的Android(APK)应用,又可以运行鸿蒙平台开发的应用(APK)。所以,6月2日发布会王博演讲的最后一个环节的话不晓得各位注意到没有: “HarmonyOS是基于OpenHarmony的第一个公开发行版” ,也算是把两者的关系做了一个比较明确的定义了。

关于鸿蒙系统是否是完全自主开发,要是没记错,华为自己是从来没有说过这样的话,但“我们要站在巨人的肩膀上”之类的话倒是看到过不少, 这个巨人放在HarmonyOS上,就是AOSP。至于有人说到的鸿蒙上使用的代码老旧,经过前边两个章节的介绍你应该明白,这对现在的华为和EMUI来说并不太重要,因为Android *** 作系统最核心的模块,华为早就已经是脱离谷歌自己在做更新,包括HMS加入后,连应用验证都自己在做,依赖度已经非常低了。

所以,现在EMUI 11还只基于Android 10版本的AOSP代码,但其对比采用Android 11版本的友商系统体验如何,相信大家心里是有数的。只是因为环境的关系, 本来应该“慢工出细活”的事情,全部被按下了快进键,很多还没来得做的事情,也都因为时间不够没有完成,比如代码替换等,相信今年的HDC 2021上华为软工团队会有更多新消息放出。

选择在现在推出HarmonyOS,对于华为也是有风险的,早年阿里YunOS与Android商业生态的冲突让我们第一次理解到了Google对“开放”的态度。现在,HarmonyOS可能面临的情况也差不多,但好在华为有HMS和初具规模的AppGallery可以进行一些对冲。

但对比这样的风险,真正的风险还是时间。从2020年5月16日算起,到现在已经过去了一年,消费者的换机周期是28个月左右,留给华为以手机产品为中心推进“1+8+N”战略的时间并不多,在余下的短短1~2年时间里,华为除了继续保留尽可能多的存量用户,还需要完成去手机中心化的“1+8+N”战略,还需要团结尽可能多的手机厂商来形成新的中心,从之前与杨海松的对话来看,新战略中的“1”,很有可能就是App了。

但另一方面,杨海松也说过: “华为擅长做产品而不擅长做生态”,这也是一个现实的问题,以前华为做产品,秉持的是“进入一个行业,就一定要做到世界第一”的“霸道”原则,现在做生态,华为应该想的是如何交到更多朋友,合作共赢,姿态非常重要……

写在最后

“华为推出HarmonyOS,中国骄傲”,发布会之后,以此为主题,各种各样的鸡血文章、小视频又出现在各大内容平台上,好一场流量盛宴。类似的场景也出现在一年前,在他们口中,似乎华为能以一己之力,一夜之间厘清中国整个芯片产业的 历史 欠账。华为人并非没有看到这些,但现在的他们,哪里有功夫去理会这些论调,有太多事要做了。虽然这篇长文,也许看到的人和看完的人有限,但我觉得能把那些关于HarmonyOS的事儿解释清楚,足矣。

一、物联网卡是什么?

物联网卡是由三大运营商(移动、联通、电信)提供,基于物联网专网,用来满足智能硬件的联网、管理,以及集团公司的移动信息化应用需求的流量卡,通俗来讲就是给电子硬件联网的卡,不能打电话,专注于上网,所以说它相当于一张流量卡。要注意的是,物联网卡针对的是物联网企业,而非个人,实名办卡的主体需要是运营公司法人。 1 运营商有专用号段

三大运营商采用各自物联网专用号段,通过专用网元设备支持包括短信、无线数据及语音等基础通信服务,提供用户自主的通信连接管理和终端管理等智能连接服务,目前,目前的物联网卡基本都是13位号码的,物联网卡的号段由之前的11位升至13位,到了几年年,工信部再次分配号段,大致如下:中国移动:10648号段;147、1849、178号段;中国联通:10646号段;1457号段;中国电信:10649号段;149号段
2 物联网卡的分类 物联网开卡主要分为两种:一种是插拔式卡,另一种是贴片式卡,通常情况下,MS卡只用于生产前装,而MP卡则前装与后装都有可能用到。 MP卡,插拔式卡,他在外形上和我们的手机SIM卡上差不多的,但是他在一些方面却比SIM卡强大的多,比如:物联网卡可以适用不同类型的环境场合,不管是在极低的温度环境还是极高的温度环境他都能保持正常运行。

MS卡,贴片式卡,贴片式卡也叫MS卡,这种物联网卡具备插拔式卡的所有优点外,还具备着高抗震的功能,目前广泛应用在焊接设备上。在一般情况下贴片式卡只适合前装,而插拔式卡前装和后装都能够适用。
二、物联网卡与SIM卡有何区别? 我们对手机SIM卡比较熟悉,而多数人把物联网卡当作是纯流量卡。物联网卡通常按照流量来收费,而流量资费少之又少,所以受到双卡双待用户的欢迎。 物联网卡除了不能电话通信,与SIM卡还有哪同?

材质不同,拔插式物联卡和普通SIM卡在大小尺寸形状上一致,但普通SIM卡应用在手机这个环境中,相对温湿度等比较理想,普通使用PVC、ABS等材质进行封装;而物联卡由于要在物联网设备等使用,一些还要在户外等环境下使用,所以使用的材质要比普通SIM卡更耐用。
普通SIM卡主要是插入式MP卡,但物联卡增加了嵌入式MS卡,采用焊接工艺,前置在物联设备中,抗震指标好,确保数据传输稳定。 普通SIM卡不需要管理平台,但物联卡一般需要物联网卡管理平台,在平台里你可以查询流量使用情况、设备是否在线、充值等功能。 普通SIM卡内置STK 菜单,通过这些菜单可以使用一引起功能或应用;物联卡主要用于上网,没有其他的应用。 普通SIM卡使用11位号码,而物联网卡使用13位号码,号码资源更丰富。 三、物联网卡怎么用? 物联网卡是面向集团企业和相关专业领域使用的,是一种属于“集团客户”范畴的套餐卡。个人用户在营业厅是无法办理集团客户套餐的,此外,运营商也有通过各渠道的物联卡供应商出售。 运营商的物联网卡资费可以分为3个标准:全国统一的资费标准、地方区域的资费标准、集团客户的资费标准。在这3种标准当中,集团客户套餐的性价比往往是最高的。
需要注意的是,由于物联网卡也可以用在手机终端,所以经常被卡商通过集团客户渠道办出来,在市面上出售。由于这种卡没有语音和通话功能,流量资费相比普通SIM卡便宜3-4倍。 物联卡是集团单位统一挂名开出来的流量卡,适用于各类终端设备的,根本无法实名制,所以要求实名制的物联卡商,一般都是为了收集客户的身份信息再进行倒卖,为了个人的电信安全,防止电信诈骗的事情发生,这里提醒大家多注意此类陷阱。 四、如何选择运营商?
1 移动物联网卡 优势:基于移动基站覆盖的优势,提供4G+物联网,信号稳定,下载上传速度快,提供2M/月-2000G/月的物联网卡套餐。 劣势:物联系统目前还不够完善,问题较多。其之前出现过串号问题,套餐生效异常,由于系统出错查询数据不准,导致很多卡恶意高额欠费,直接废卡。但现在最新的移动物联卡已经可以解决这个问题了,但仍有不稳定存在。
2 联通物联网卡 优势:收费灵活,流量不清零,半年有效期,用多少充多少。 劣势:网速较慢(介于3G和4G之间),信号稳定性也一般。部分商家会收取卡费。
3 电信物联网卡 优势:资费在三大运营商中相对是最便宜的,也是最灵活的。速度和稳定性均有不错的表现。 劣势:支持电信网络的硬件设备和模块也是最少的,这也是限制电信物联网卡发展的最大障碍。 五、物联网卡用在哪? 物联网卡广泛应用于移动传媒、监控和监测、医疗 健康 、车联网、可穿戴设备、智能表具、无线POS机等诸多领域。
1 无线POS机:在无线POS机上的应用属于较早的,并且很成熟。传统的POS机,需要通过电话线来通讯,因此只能安装在电话附近,受线缆的限制不能移动,且个头较大。在POS加入物联网卡后,就可以摆脱这些束缚,像手机一样带着出门,实现了移动性,使用起来更便捷。由于POS机刷卡产生数据很少,流量费用也少,30元左右即可用一年,实现较大普及。
2 共享单车:2015年,共享单车开始兴起,它的GPS定位功能、扫描解锁功能都是通过物联网卡联网实现。拿摩拜单车来说,已经覆盖全球170座城市,投放单车总量近800万台。其核心技术就是物联网卡,每辆单车配备了“北斗+GPS”多模卫星导航芯片和移动物联网芯片,能够实时监控单车位置和状态。此前,摩拜单车宣布与四川移动达成战略合作,订购四川移动下发的100万张物联网卡。
3 可穿戴设备:通过物联网卡进行数据链接,穿戴设备将不再需要通过手机就能随时随地的连接上互联网。例如,年老者或年幼者佩戴有定位功能的设备,通过物联网卡就可以实现GPS定位;穿戴设备利用物联网卡,实时收集用户的行走步数、行走距离、生活轨迹、睡眠质量、身体状况等数据。
4 车联网: 汽车 装置物联网卡后,车载自动诊断系统,可实时采集车辆的刹车、轮胎、发动机等部件的运行情况,为车主提供 汽车 各项数据,保障安全出行。物联网卡还常用在车载导航、行车记录仪、智能中控等。

物联卡,主要是给设备用的流量卡,比如电话手表、共享单车以及各类需要联网的设备上,目的主要是进行流量传输,打不了电话,一般情况一张物联卡需要与一个物联设备进行绑定,物联卡还有一个对应的串号。

不过在实践中,物联卡是可以用来上网的。我自己就是用的物联卡,电信运营商办的电话卡流量费较高,而物联卡费用相对更低。现在大多数手机都可以插双卡(有些还可以插三张卡),我用的物联卡是98元每月流量20G,基本上用不完。

当然,这张卡是不能打电话的,仅仅用来上网,网络也不错,可以使用4G网络,视频也可以正常刷。对于物联卡不能插拔卡的问题,并不是绝对,但确实有些物联卡是不能拔卡的,之前我就用过一张,当时没注意,本来是取下自己的手机卡,但两张卡槽其实是连在一起的,需要同时取下来。

因为取下了卡,再插上去,就上不了网络,但有些物联卡是可以取卡的,只不过取下来之后再插上去,需要重新绑定一次设备,就可以正常使用了。本身就处于物联设备的话(卡片能识别),是可以正常插拔的,比如说家里的儿童电话手表,信号不好以为是没插好卡,取下来后再重新插上还是能正常使用的。

如果本身就是物联设备,那正常使用就可以,如果是将物联卡放手机上当作流量卡,那么在购买这种卡之前,需要先咨询好,能不能机卡分离,对于不能机卡分离的物联卡来说,最好就不要去取卡了,要不然重新插拔可能就无法使用了。

亲,换完手机或者卡槽需要后台重绑的,现在把卡放到你要使用的设备上,放卡一,放好了,告诉我,这边帮你重绑一下,一个月只能重绑一次。

这是我换设备的流程!

因为物联卡不是给手机用的,它是给我们身边的终端使用!

比如共享单车!膜拜 小蓝单车 0f0 等……

又比如我们 汽车 上的gps定位!它的初衷是终端设备。

物联卡是没有卡号的,使用必须要绑定卡上的序列号!而且必须放到手机卡槽一里边,手机用的话不符合它的数据传输!一旦绑定这个设备就不能随意跟换!所以换设备还需要物联卡后台替你更换设备才能用,一个月只可以跟换两次!

物联卡本身和普通的电话卡没有区别,都是SIM卡体,只不过套餐本身做了功能限定。

不建议随意插拔,其实更多是跟2G/4G模块本身有关系:

1、模块里面有为业务专门编写的固件,插拔物联卡会导致业务过程中断,如果程序员没做或漏做容错处理,会对业务数据产生影响,也可能导致模块需要重启后才能正常运行。

2、模块使用的SIM卡槽,在多次插拔后容易损坏。

3、SIM卡是分插入方向的,如果方向不对,会导致联网失败,普通用户不见得能搞对。

4、物联网设备分散在不同的区域,一旦插拔物联卡,只会把故障情况复杂化,让远程维护的技术更难以判断故障原因。

5、插拔过程不注意导电、静电的防护,会导致2G/4G模块短路烧毁,我就碰到过同事直接把模块电路板放在机柜金属外壳上导致烧毁的情况。

总结一下:其实不是不能,只是技术为了更好地处理工作,不让插拔。

物联卡为什么不能随意插拔?

如果你现在正在使用移动物联卡片,并且是在智能手机上应用,个人建议你不要随意的插拔或者更换不同的插槽,可能会出现的结果就是被移动运营商锁卡锁机卡片直接从4G网络变为两g网络,并且不能再进行上网体验

网上或者是微信群里面大多数卖的,通过移动卡片背面的ID号码进行激活的卡片,基本很多是没有通过真正的实名认证,再加上月初或者是月末通过微信公众号进行充值卡片的网络,不能得到保证,会出现网络延迟,甚至是网速被限制为100到200 KB左右基本网页打开都费劲,就更别谈,用来进行观看短视频之类

并且现在大多数的移动物联卡片要在智能手机上使用,要重新设置网络模式,不然无法正常使用

假设是应用于iPad,或者是4G无线路由器以及其他非智能手机设备,任意插拔使用都不会出现物联卡在使用的过程中被锁卡的情况出现

自互联网出现伊始, 社会 就在互联网络作用下开始交织一张连接万物的大网,从仅仅维持人与人之间数据连接、资源共享的局面到如今的物与物、物与人之间的多重交互式连接,物联网功不可没,处于物联网连接万物核心枢纽的物联网卡自然也是 社会 智能化发展的重要支撑力量。如今 社会 上大量引用的物联网卡物理产品形态主要有贴片式物联网卡与插拔式物联网卡,它们除了都能赋予硬件设备网络连接功能外,在网络连接特性、环境适应性、材质耐用性以及价格成本方面都有较大区别。

贴片式物联网卡与插拔式物联网卡的区别:

处理器的架构一直以来是x86和ARM的天下,而自2010年RISC-V诞生以后,隐约呈现出了三足鼎立的趋势。

x86主要应用于传统PC市场,善于处理大数据,IP掌握在英特尔和AMD手中。ARM主要统治移动市场,处理快数据为主。RISC-V可以同时兼顾数据传输速度与传输量,而x86和ARM并不是很胜任。

x86属于复杂指令集(CISC)架构,ARM、MIPS和RISC-V属于精简指令集(RISC)架构。x86已经不对外授权,而ARM需要支付高额的专利授权费才能使用。RISC-V允许任何人自由地用于任何目的,允许任何人设计、制造和销售RISC-V芯片和软件,而不必支付专利授权费。

能够完全买断ARM架构的只有苹果、高通、三星、华为、联发科这样资金雄厚的公司,他们有几十至几百人的研发团队可以快速的消化ARM架构产出自己的芯片。但绝大多数的普通人想深入的了解和学习ARM架构是非常困难的。

RISC-V允许几个人的小团队花费几个月至几年的时间去创造属于自己的芯片。开放免费的生态有助于形成强大的生态系统,如Linux和Android。

RISC-V的缺点在于还没有形成赖以它生长的一整套生态系统,比如:Windows基于x86,Android基于ARM。RISC-V基金会其实对此并不做任何定义,生态系统的搭建交予使用者来自行发挥,最主要的原因就是生态系统并非一蹴而就。

但RISC-V基金会内部已经形成了较为完善的生态圈。迄今为止,该基金会已经吸引了全球28个国家300多家会员加入。

RISC与ARM、RISC-V指令集架构其实一直分为复杂指令集(CISC)架构和精简指令集(RISC)架构。在传统电脑领域复杂指令集占据了优势,在移动端为王的时代以及未来的万物互联时代精简指令集将会占据绝大多数市场份额。

复杂指令集架构需要足够多的训练,才能完成“吃饭”的一系列的动作,如果要完成其他的动作,又要与之相对应的指令。而精简指令集拆解成了最简单的步骤,“舀一勺饭”改成“舀一勺菜”就完成了从吃饭到吃菜的动作。我们不能通过人的正常思维去思考这个问题,毫无疑问对于机器精简指令集的执行效率比复杂指令集高,反应速度也会更快,这样就可以减少硬件的复杂程度从而减少功耗。

RISC是1981年在David Patterson的带领下,加州大学伯克利分校的一个研究团队起草了RISC-1,就是今天的RISC架构的基础。RISC的设计理念催生了一系列新架构,如:MIPS、IBM PowerPC、ARM。

2010年伯克利大学并行计算实验室(Par Lab)的1位教授和2个研究生想要做一个项目,需要选一种计算机架构来做。当时面临的选择是x86、ARM,但不管选择哪个都或多或少的出现问题,比如:授权费价格高昂、不能开源、不能扩展更改等等。

所以他们在2010年5月开始规划自己做的一个新的、开源的指令集RISC-V(第五代精简指令集)。到了2015年,RISC-C在学术界已经开始出名了,3位创始人还从两个方面推动RISC-V在技术和商业上的发展:成立RISC-V基金会,维护RISC-V指令集架构的完整性和非碎片化。成立SiFive公司,推动RISC-V商业化。开发了用于RISC-V处理器设计的Chisel语言。

x86和ARM的架构篇幅动则数千页,RISC-V的规范文档仅有145页,且“特权架构文档”的篇幅页仅有91页,基本的RISC-V指令数目仅有40多条。

现在可能大家还看不出精简指令集的优势,在未来的物联网大概会有300亿个设备被链接起来。

它们并没有很强悍的硬件去匹配比较复杂的指令集架构,它们需要的是功耗小、响应快、故障率低。在这个时候,精简指令集的潜力就完全的被挖掘出来了。正如基于x86的CPU并不适用于移动设备一样,ARM就是乘着这样一阵风飞起来的,未来精简指令集也会,并且会飞得更高。为什么这里没有明确指出是RISC-V,因为还有其他的精简指令集架构,如:MIPS。MIPS或将成为RISC-V未来赛道上的最强竞争者MIPS、RISC-V两者的架构相差不大,MIPS也在2018年12月宣布开源。

MIPS是最早出现的商业RISC架构芯片之一,在80年代中期在很多地方都能看到MIPS的身影,如:Sony、Nitendo的游戏机、Cisco路由器、SGI超级计算机等,基于MIPS指令集的芯片已经有100亿颗的出货,这就意味着MIPS处理器在很多的市场已经非常成熟了。

RISC体系遭到x86碾压式竞争的时候,MIPS是RISC中唯一一个盈利的。在智能手机时代,由于MIPS选择消费电子,而ARM选择了手机市场,就导致了它们两不同的命运。中国企业大爱RISC-V架构,或将借IOT实现弯道超车RISC-V的开源、免费的特性,使得国内渴望掌握芯片核心技术的企业可以持续的使用和壮大下去。同时因为RISC-V是模块化的设计,可以直接应用模块,它的使用、开发门槛也低。

美国加码实体清单针对中国企业,会更加坚定国内企业研究自主可控芯片的决心。在未来,中国或将借着IOT这波东风实现弯道超车。以上个人浅见,欢迎批评指正。认同我的看法,请点个赞再走,感谢!喜欢我的,请关注我,再次感谢!

你好,谢邀。很高兴回答你的问题。电子车牌芯片的拆卸需要专业技术和工具,建议您不要自行尝试。如果您需要更换或修理电子车牌芯片,请联系相关的维修服务中心或者厂家进行处理。在拆卸过程中,如果 *** 作不当可能会导致芯片损坏、数据丢失等问题,甚至会影响到整个电子车牌系统的正常运行。因此,请务必谨慎对待这一问题,并选择合适的专业人员进行处理。

大疆无人机的核心零部件都是国产的。

作为全球顶尖的无人机飞行平台和影像系统自主研发和制造商,DJI大疆创新始终以领先的技术和尖端的产品为发展核心。

从最早的商用飞行控制系统起步,逐步地研发推出了ACE系列直升机飞控系统、多旋翼飞控系统、筋斗云系列专业级飞行平台S1000、S900、多旋翼一体机Phantom、 Ronin三轴手持云台系统等产品。不仅填补了国内外多项技术空白,并成为全球同行业中领军企业。

扩展资料:

深圳市大疆创新科技有限公司成立于 2006 年,已发展成为空间智能时代的技术、影像和教育方案引领者。

成立十四年间,大疆创新的业务从无人机系统拓展至多元化产品体系,在无人机、手持影像系统、机器人教育等多个领域,成为全球领先的品牌,以一流的技术产品重新定义了“中国制造”的内涵,并在更多前沿领域不断革新产品与解决方案。

以创新为本,以人才及合作伙伴为根基,思考客户需求并解决问题,大疆创新得到了全球市场的尊重和肯定。

从2018年开始,多款基于氮化镓技术开发的快充充电器相继量产,氮化镓也正式开启了在消费类电源领域商用。

近日,氮化镓半导体材料被正式写入“十四五规划”中,这就意味着氮化镓产业将在未来的发展中获得国家层面的大力扶持,前景十分值得期待。

氮化镓(gallium nitride,GaN)属于第三代半导体材料,其运行速度比传统硅(Si)技术加快了二十倍,并且能够实现高出三倍的功率,用于尖端快速充电器产品时,可以实现远远超过现有产品的性能,在尺寸相同的情况下,输出功率提高了三倍。

氮化镓新技术应用领域广阔,覆盖5G通信、人工智能、自动驾驶、数据中心、快充等等,这其中快充市场发展最为迅猛,成为先进技术普惠大众的一个标杆应用,可谓是人人都能享受到新技术从实验室走向市场的便利;而快充出货量、需求量庞大,也反哺了氮化镓技术的不断迭代。快充与氮化镓,堪称天生一对。

凭借优秀的性能,两年来氮化镓技术在快充电源方面的发展一路突飞猛进,普及速度十分快,获得越来越来越多品牌客户和消费者的认可。而作为氮化镓快充的核心器件,GaN功率芯片也一直都是大家关注的焦点。

充电头网通过长期跟踪调研了解到,近两年时间里,业内GaN功率芯片供应商也从起初的一两家迅速增长至十余家。今天这篇文章就是带大家详细的了解一下当前快充领域的氮化镓功率芯片领域的主要玩家。

众多厂商入局氮化镓功率器件

面对日益增长的快充市场,全球范围内已有纳微、PI、英诺赛科、英飞凌、意法半导体、Texas Instruments、GaNsystems、艾科微、聚能创芯、东科半导体、氮矽 科技 、镓未来、量芯微、Transphorm、能华、芯冠 科技 等16家氮化镓功率芯片供应商。

值得一提的是,英诺赛科苏州第三代半导体基地在去年9月举行设备搬入仪式。这意味着英诺赛科苏州第三代半导体基地开始由厂房建设阶段进入量产准备阶段,标志着全球最大氮化镓工厂正式建设完成,同时也预示中国功率半导体步入一个崭新时代。

充电头网通过整理了解到,目前市面上合封氮化镓芯片可分为以下四种类型:

控制器+驱动器+GaN:这种方式以老牌电源芯片品牌PI为代表,其基于InSOP-24D封装,推出了十余款合封主控、氮化镓功率器件、同步整流控制器等的高集成氮化镓芯片,PowiGaN芯片获众多品牌青睐,成为了合封氮化镓快充芯片领域的领导者。

此外在本土供应商中,东科半导体率先推出两款合封氮化镓功率器件的主控芯片DKG045Q和DKG065Q, 对应的最大输出功率分别为45W和65W。这两款芯片在节约系统成本,加速产品上市方面均有着巨大的优势,并有望在2021年量产。

驱动器+GaN:这种合封的氮化镓功率芯片以纳微半导体为主要代表,其为业界首家推出内置驱动氮化镓功率芯片的厂商,凭借精简的外围设计,获得广大工程师及电源厂商青睐,在2020年底,达成芯片出货量突破1300万颗的好成绩。

驱动器+2GaN:合封两颗氮化镓功率器件以及驱动器的双管半桥产品,其集成度较传统的氮化镓功率器件更高。这类产品应用于ACF架构,以及LLC架构的氮化镓快充产品中,可以实现更加精简的外围设计。目前纳微半导体、英飞凌、意法半导体等厂商在这类合封氮化镓芯片方面均有布局。

驱动器+保护+GaN:纳微半导体近期推出了新一代氮化镓功率芯片NV6128,集成GaN FET、驱动器和逻辑保护器件。将保护电路也加入氮化镓器件中,通过整合开关管和逻辑电路,可得到更低的寄生参数以及更短的响应时间。该芯片可以实现数字输入,功率输出高性能,电源工程师可基于此设计出更快更小更高速的电源。

氮化镓芯片品牌盘点

以下排名不分先后,仅按照品牌首字母排序,方便读者查阅。

ARK艾科微

艾科微电子专注于高功率密度整体方案开发, 并以解决高功率密度电源系统带来的痛点与瓶颈为使命, 核心团队具备超过 20 年专业经验于功率半导体产业, 我们透过不断的创新及前瞻的系统架构并深入结合功率器件及高效能封装, 来实现高品质、高效能与纯净的电源系统,以满足市场对未来的需求。

艾科微在AC/DC 快充方案上不仅推出原副边芯片, 另有自主的开发MOSFET功率器件。伴随各种应用上电子产品针对高功率密度之强烈需求,我们承诺持续投资、创新、研发并一同与我们的合作伙伴引领市场、开创未来。

Cohenius聚能创芯

青岛聚能创芯微电子有限公司成立于2018年7月,公司坐落于青岛国际创新园区,主要从事第三代半导体硅基氮化镓(GaN)的研发、设计、生产和销售,专注于为业界提供高性能、低成本的GaN功率器件产品和技术解决方案。

聚能创芯掌握业界领先的GaN功率器件与应用设计技术,致力于整合业界优势资源,打造GaN器件开发与应用生态系统,为PD快充、智能家电、云计算、5G通讯等提供国产化核心元器件支持。

背靠上市公司赛微电子(300456)与知名投资基金支持,聚能创芯建立了业界领先的管理和技术团队。在产品研发与量产过程中,始终坚持高品质与高可靠性的要求。在得到合作伙伴广泛认同的同时,逐步成为第三代半导体领域的国际知名企业。

在消费类电源领域,聚能创芯面向快充应用国产化GaN材料和器件技术解决方案,并基于现有的氮化镓功率器件推出全新65W、100W、120W氮化镓快充参考设计。

Corenergy能华

江苏能华微电子 科技 发展有限公司是由留美归国博士于2010年创建。团队汇集了众多海内外的专业人才,是一家专业设计、研发、生产、制造和销售高性能氮化镓外延、晶圆、器件及模块的高 科技 公司。

氮化镓(GaN)是新一代复合半导体的代表,江苏能华已建立了GaN功率器件生产线。项目计划总投资50个亿,分期投资。预计第一期投资超10个亿。公司于2017年搬入张家港国家再制造产业园,新厂房占地3万平方,拥有万级、千级以及百级的无尘车间,并配备有先进的生产设备以及专业的技术人员。

DANXI氮矽 科技

成都氮矽 科技 有限公司是一家专注于第三代半导体氮化镓功率器件与IC研发的 科技 型公司,专注于氮化镓功率器件及其驱动芯片的设计研发、销售及方案提供,公司两位创始人均拥有超过5年的氮化镓领域相关研发经验。

氮矽 科技 于2020年3月发布国内首款氮化镓超高速驱动器DX1001,同年4月推出国内多款量产级别的650V氮化镓功率芯片DX6515/6510/6508,搭配该公司的驱动芯片,进军PD快充行业。

值得一提的是,氮矽 科技 还推出了业内最小尺寸、最强散热能力的650V/160mΩ氮化镓晶体管,引领氮化镓产业革命。基于现有的氮化镓功率器件,氮矽 科技 推出4套国产GaN快充参考设计,丰富快充电源工程师的产品选型需求。

DONGKE东科

安徽省东科半导体有限公司于2009年成立,总部位于安徽省马鞍山市,主要从事开关电源芯片、同步整流芯片、BUCK电路电源芯片等产品研发、生产和销售;并成立深圳及无锡全资子公司和印度公司,负责全球市场销售及技术支持。

东科半导体在北京、青岛、无锡、深圳多地成立研发中心,多名海归博士主持研发 探索 ,在安徽马鞍山拥有2万平方米的封装车间和品质实验室,拥有DIP-8/SOP-8/SM-7/SM-10/TO-220等多种产品封装能力;在东科半导体总部成立的马鞍山集成电路国家实验室,具备对芯片进行开封、失效分析、中测、划片、高低温测试等多种分析能力,为公司产品品质和供货提供可靠保障。

针对快充领域的应用,东科半导体推出了业界首颗合封氮化镓功率器件的电源芯片,成为了国产氮化镓快充发展史上的里程碑。

GaN system氮化镓系统公司

GaN Systems于2008年成立于加拿大首都渥太华,创始人是前北电的资深功率半导体专家。公司专注于增强型氮化镓功率器件的开发,提供高性能、高可靠性的增强型硅基GaN HEMT功率器件。

GaN Systems拥有专利的GaN芯片设计,GaNPx 芯片级封装技术和市场上最全的650V和 100V产品系列,涵盖了从小功率消费电子到几十kW以上工业级电源应用。

GaN Systems采用无晶圆厂模式,与世界级代工厂和供应链合作。产品自2014年开始量产以来,在全球范围服务超过2000家客户。在中日韩和北美及欧洲设有销售分公司和应用支持。据了解,目前GaN Systems的氮化镓功率芯片已经进入飞利浦快充供应链。

GaNext镓未来

珠海镓未来 科技 有限公司成立于2020年10月,公司致力于第三代半导体GaN-on-Si器件技术创新和领先。通过高起点、强队伍等,实现GaN技术的国产化,推动GaN器件的技术的,并且通过电源系统的创新设计,实现能源的绿色、高效利用。

公司创始团队由3位资深GaN-on-Si技术/产业专家构成,以深港微电子学院于洪宇教授和美国知名氮化镓公司研发VP领衔,前华为GaN产业共同创始人加盟,构建了完整的技术、制造、市场的铁三角,厚积薄发。通过成熟领先的产品,推动GaN技术国产化,依托中国巨大电源应用市场和国家第三代半导体产业政策的支持,向氮化镓产业顶峰进军,助力国家第三代半导体产业目标的突破。

GaNPower量芯微

苏州量芯微半导体有限公司是加拿大GaNPower International Inc在中国注册成立的公司。GaNPower于2015年在加拿大成立,总部位于加拿大温哥华市。GaNPower是全球氮化镓功率器件行业的知名公司,目前产品主要为涵盖不同电流等级及封装形式的增强型氮化镓功率器件及氮化镓基电力电子先进应用解决方案。

苏州量芯微半导体公于2019年荣获苏州工业园区第十三届金鸡湖 科技 领军人才称号;《氮化镓功率器件及相关产业化应用》被列为政府重点扶持项目。公司的氮化镓功率器件产品荣获行业权威大奖:2020年ASPENCORE中国IC设计成就奖之年度功率器件奖。公司目前拥有40项美国和中国的专利及申请。

据悉,量芯微半导体已经推出650V氮化镓功率器件,适用于45W-300W快充。

Innoscience英诺赛科

英诺赛科 科技 有限公司成立于2015年12月,国家级高新技术企业,致力于研发和生产8英寸硅基氮化镓功率器件与射频器件;英诺赛科是全球最大的氮化镓功率器件IDM 企业之一, 拥有氮化镓领域经验最丰富的团队、先进的8英寸机台设备、加上系统的研发品控分析能力,造就英诺赛科氮化镓产品一流品质和性能的市场竞争优势。

自从2017年建立全球首条8英寸增强型硅基氮化镓功率器件量产线以来, 目前英诺赛科已经发布和销售多款650V以下的氮化镓功率器件,产品的各项性能指标均达到国际先进水平,能广泛应用于多个新兴领域, 如快充、5G 通信、人工智能、自动驾驶、数据中心等等。

目前,英诺赛科已经建成了全球最大的氮化镓工厂,在USB PD氮化镓快充市场,英诺赛科650V高压氮化镓功率器件已经在努比亚、魅族、MOMAX、ROCK等众多知名品牌产品中得到应用,并在近期推出第二代InnoGaN产品,性能较上一代有显著提升。

此外,英诺赛科还推出了多款低压GaN功率器件,适用于同步整流、DC-DC电压转换以及激光雷达等领域。在全球市场中,英诺赛科是少有具备氮化镓高压、低压全品类产品线的IDM芯片原厂。

infineon英飞凌

英飞凌 科技 股份公司是全球领先的半导体 科技 公司,我们让人们的生活更加便利、安全和环保。英飞凌的微电子产品和解决方案将带您通往美好的未来。2020财年(截止9月30日),公司的销售额达85亿欧元,在全球范围内拥有约46,700名员工。2020年4月,英飞凌正式完成了对赛普拉斯半导体公司的收购,成功跻身全球十大半导体制造商之一。

英飞凌电源与传感系统事业部提供应用广泛的电源、连接、射频(RF)及传感技术,让充电设备、电动工具、照明系统在变得更小、更轻便的同时,还能提升能效。新一代的硅基/宽禁带半导体解决方案(碳化硅/氮化镓)将为5G、大数据及可再生能源应用,带来前所未有的突出性能和可靠性。

高精度XENSIV 传感器解决方案为物联网设备赋予了人类的感官功能,让这些设备能够感知周遭的环境,并做出“本能”反应。音频放大器产品扩充了电源与传感系统事业部的产品线,让智能音箱及其它音频应用设备能够提供卓越的音质体验。

Navitas纳微

纳微半导体是全球领先氮化镓功率IC公司,成立于2014年,总部位于爱尔兰,拥有一支强大且不断壮大的功率半导体行业专家团队,在材料、器件、应用、系统、设计和市场营销方面,拥有行业领先的丰富经验,公司创始者拥有320多项专利。

GaNFast功率IC将GaN功率(FET)与驱动,控制和保护集成在一起,可为移动、消费电子、企业、电动交通和新能源市场提供更快的充电,更高的功率密度和更强大的节能效果。纳微在GaN器件、芯片设计、封装、应用和系统的所有方面已发布和正在申请的专利超过120项,已完成生产并成功交付了超过1300万颗GaNFast氮化镓功率IC,产品质量和出货量全球领先。

近期,纳微半导体也推出了最新一代氮化镓功率芯片NV6128,内置驱动和保护功能,适用于大功率快充产品。凭借优异的产品性能,纳微半导体已经成为小米、OPPO、联想、戴尔、LG等众多知名品牌的氮化镓芯片供应商,基于GaNFast芯片开发的产品多达百余款。

PI

Power Integrations 是一家专注于高压电源管理及控制领域的高性能电子元器件及电源方案的供应商,总部位于美国硅谷。

PI所推出的集成电路和二极管为包括移动设备、家电、智能电表、LED灯以及工业应用的众多电子产品设计出小巧紧凑的高能效AC-DC电源。SCALE 门极驱动器可提高大功率应用的效率、可靠性和成本效益,其应用领域包括工业电机、太阳能和风能系统、电动 汽车 和高压直流输电等。

自1998年问世以来,Power Integrations的EcoSmart 节能技术已节省了数十亿美元的能耗,避免了数以百万吨的碳排放。由于产品对环境保护的作用,Power Integrations的股票已被归入到由Cleantech Group LLC及Clean Edge赞助的环保技术股票指数下。

充电头网拆解了解到,PI的氮化镓芯片已被小米、OPPO、ANKER、绿联、belkin等多个品牌的快充产品采用。此外,PI还推出了全新的MinE-CAP IC,用于快充充电器时,体积可缩小40%。

ST意法半导体

意法半导体(STMicroelectronics; ST)是全球领先的半导体公司,提供与日常生活息息相关的智能的、高能效的产品及解决方案。意法半导体的产品无处不在,致力于与客户共同努力实现智能驾驶、智能工厂、智慧城市和智能家居,以及下一代移动和物联网产品。享受 科技 、享受生活,意法半导体主张 科技 引领智能生活(lifeaugmented)的理念。意法半导体2018年净收入966亿美元,在全球拥有10万余客户。

目前,ST意法半导体推出了一款GaN半桥器件,内置驱动器和两颗氮化镓,并基于该芯片推出了一套推出65W氮化镓快充参考设计。

Texas Instruments德州仪器

德州仪器 (Texas Instruments)是全球领先的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片。数十年来,TI一直在不断取得进展,推出的80000多种产品可帮助约100000名客户高效地管理电源、准确地感应和传输数据并在其设计中提供核心控制或处理,从而打入工业、 汽车 、个人电子产品、通信设备和企业系统等市场。

2020年11月10日,德州仪器推出了650V和600V两款氮化镓功率器件,进一步丰富拓展了其高压电源管理产品线。与现有解决方案相比,新的GaN FET系列采用快速切换的22 MHz集成栅极驱动器,可帮助工程师提供两倍的功率密度和高达99%的效率,并将电源磁性器件的尺寸减少59%。

Transphorm

Transphorm公司致力于设计、制造和销售用于高压电源转换应用的高性能、高可靠性的氮化镓(GaN)半导体功率器件。Transphorm持有数量极为庞大的知识产权组合,在全球已获准和等待审批的专利超过1000多项 ,是业界率先生产经JEDEC和AEC-Q101认证的GaN FET的IDM企业之一。

得益于垂直整合的业务模式,Transphorm公司能够在产品和技术开发的每一个阶段进行创新——包括设计、制造、器件和应用支持。充电头网拆解了解到,此前ROMOSS推出的一款65W氮化镓充电器内置的正式Transphorm公司的GaN器件。

XINGUAN芯冠 科技

大连芯冠 科技 有限公司是全球领先的第三代半导体氮化镓外延及器件制造商,致力于硅基氮化镓外延与功率器件的研发、设计、生产和推广,拥有先进的外延材料与功率器件生产线,提供650V全规格的功率器件产品,电源功率的应用覆盖几十瓦到几千瓦范围。广泛应用于消费类电子(快充、大功率适配器等)、工业电子与 汽车 电子等领域。

芯冠氮化镓功率器件的特点是兼容标准MOS驱动,应用设计简单;抗击穿电压高达1500V以上,使用安心。

充电头网总结

从三年前GaN技术开始在消费类电源领域商用,到如今市售GaN快充已经多达数百款,市场发展速度可谓是突飞猛进。这一方面是借助各大手机、笔电厂商陆续入局的产生的品牌影效应,另一方面也离不开氮化镓快充生态的日趋完善。

就充电头网本次不完全统计,已经布局快充市场的氮化镓芯片供应商已经多达16家,方案多达数百款;并且涵盖了多样化的封装方式,完全可以满足当前快充电源市场对核心器件的选型需求。

相信随着国家十四五规划对氮化镓产业的大力扶持,入局氮化镓功率芯片的厂商数量将越来越多。不仅产品类型将会的得到进一步完善,更重要的是当氮化镓产业呈现规模化发展后,电源厂商开发氮化镓快充的成本将会得到优化;而氮化镓功率芯片也将成为越来越多高性能快充电源产品的首选。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13420001.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-01
下一篇 2023-08-01

发表评论

登录后才能评论

评论列表(0条)

保存