不过,过去很多年的时间由于技术和应用场景等各种原因,边缘计算一直没有获得太多的关注,直到5G时代的到来,才让一直处在“很边缘”的边缘计算得到了全新的发展良机。
云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。
云计算vs边缘计算
云计算的不足
随着边缘计算的兴起,在太多场景中需要计算庞大的数据并且得到即时反馈。这些场景开始暴露出云计算的不足,主要有以下几点:大数据的传输问题:据估计,到2020 年,每人每天平均将产生 15GB 的数据。随着越来越多的设备连接到互联网并生成数据,以中心服务器为节点的云计算可能会遇到带宽瓶颈。数据处理的即时性:据统计,无人驾驶汽车每秒产生约 1GB 数据,波音 787 每秒产生的数据超过 5GB;2020 年我国数据储存量达到约 39ZB,其中约 30% 的数据来自于物联网设备的接入。海量数据的即时处理可能会使云计算力不从心。隐私及能耗的问题:云计算将身体可穿戴、医疗、工业制造等设备采集的隐私数据传输到数据中心的路径比较长,容易导致数据丢失或者信息泄露等风险;数据中心的高负载导致的高能耗也是数据中心管理规划的核心问题。
边缘计算的优势和发展
边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。相较于云计算,边缘计算有以下这些优势。
优势一:更多的节点来负载流量,使得数据传输速度更快。
优势二:更靠近终端设备,传输更安全,数据处理更即时。
优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
两者既有区别,又互相配合上文讲了云计算的缺点以及边缘计算的优点,那么是不是意味着在未来,边缘计算更胜云计算一筹呢?其实不然!云计算是人和计算设备的互动,而边缘计算则属于设备与设备之间的互动,最后再间接服务于人。边缘计算可以处理大量的即时数据,而云计算最后可以访问这些即时数据的历史或者处理结果并做汇总分析。通俗讲解边缘计算
随着物联网越来越火,同时伴随着物联网而来的,就是各种概念和各种技术,其中一个就是边缘计算,当然还有雾计算。其实边缘计算和雾计算都差不多,雾计算只是和云计算是相对的。只是叫边缘计算呢,比较高大上吧。
下面我们要通俗地讲一讲边缘计算。
为什么要通俗的讲呢,怕如果不通俗,你听不明白。新的东西在出来的时候,往往是需要一个接纳和理解的过程。就像以前互联网刚出来的时候,很多人都不知道互联网,于是就得慢慢科普,让大家慢慢接受和理解呀。谁现在还解释什么是互联网呀。
而边缘计算也有一段时间了,只是随着物联网的发展,边缘计算的概念也开始流行起来。我们先看一段非通俗的介绍边缘计算的概念:
边缘计算,是一种分散式运算的架构。在这种架构下,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。
或者说,边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。
边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。
以上是我从网络文章摘抄的一段对于边缘计算的解释。整个解释基本都是专业术语,搞工控的你,看完这段话,你来告诉我什么是边缘计算。
作为一名参与研发产品边缘计算的程序员,我决定写一篇文章来通俗讲解一下这个边缘计算。
首先,我要举一个不太恰当的例子。
比如有一款APP,用户在使用这款APP的时候,就会收集用户的信息,比如收集这个用户的年龄,性别,手机号,地址位置,搜索记录等等信息,而收集这些信息主要是更好地分析这个用户的行为和感兴趣的东西,比如车,房子,书,美食等什么感兴趣。然后更为准确地为其投放内容及广告。
这个是很常见的一个功能,但是就是这样一个功能,怎么和边缘计算挂钩呢。
在边缘计算之前,就是云计算了。
如果是使用云计算,这款APP的行为是这样的:
APP收集到信息后,把所有的基本信息,上传到服务器中,然后由服务器来执行算法,计算和识别出用户的兴趣爱好,甚至可能推算出这个用户的消费能力。然后服务器就可以根据这个推算出来的结果,为用户投放其感兴趣的内容和广告。
如果是使用边缘计算,这款APP的行为就是这样:
APP收集了信息后,不上传到服务器中。然后由APP自己计算和识别出这个用户的兴趣和爱好,也可以推算出这个用户的消费能力,也就是服务器的计算功能,直接由APP来完成。然后服务器只需要问一下APP,哪个用户是有可能是年薪百万的,哪个用户是单身的。APP只需要告诉服务器说,这个一路向东用户很帅,而且还单身,喜欢旅游,写诗,可以为其投放相亲美女内容。
就这样,整个过程并没有服务器参与计算,服务器也没有参与收集信息。因为这个信息在APP本身收集和计算,并没有进行上传,所以也没有涉及信息收集。
而,这就是边缘计算。
也就是以前由服务器作计算的部分,现在改由信息采集的设备直接计算了,再把计算的结果,直接输出到服务器中。服务器只要结果,并不需要过程的数据。
下面我们就以回答问题的形式来通俗的聊一聊这个边缘计算吧。
所以,什么是边缘计算呢。
边缘计算,说白了,就是(服务器)云计算懒得算了,就这点数据,你在数据采集的时候,顺便自己算得了,什么都丢到服务器来算,很累的。于是,边缘计算就这么来了。
那么,工控领域行业中使用到边缘计算的都有哪呢
这个就太多了。随着很多PLC,控制器和触摸屏等都开始接入到物联网中,每个设备需要采集的信息不一样,有温度,湿度,产量,生产数据,运行状态等。而不同行业的参数指标,性能数据都不一样,这很难在服务器通过云计算来形成一套标准,这使得PLC,控制器等,都会用到边缘计算。
为什么以前的DTU,或者物联模块等不流行边缘计算,现在开始流行了呢。
因为现在的IoT使用的模块或者芯片的处理能力也越来越高,资源也比较丰富,随着一些芯片成本的下降,以及开发模式的简化,使得一些芯片或模块在处理基本的数据采集功能后,仍存在资源过剩及功能利用率低的情况,也就是一个100%的芯片或模块,你只使用了10%的来采集数据,那还有90%你可以用来作计算
那么,使用边缘计算的优势在哪里呢。
1 可以使得设备的支持数量提升几个数量级。
比如一个服务器有10000点血。而接入一个设备,就要消耗1点血,如果再对这个设备进行数据分析,需要消耗9点血。也就是接入并计算一个设备就需要10点血。那么这个服务器最多只能接入1000个设备就挂了。
如果服务器只负责接入设备,不进行计算和分析,那么接入一个设备,消耗1点血,由设备自己进行数据计算和分析,再输出结果。这时候服务器就可以接入10000个设备了。
没有使用边缘计算,服务器可以接1000个设备。
如果使用了边缘计算,服务器可以接10000个设备。提升了一个数量级。而对于一些复杂的设备,特别是一些工厂,现场作业等需要数据量多的,如果使用了边缘计算来给服务器节省空间和资源,这个优势更能体现出来了。
2 让计算变得更为灵活和可控
前面说到,接入设备的服务器很难做到统一的计算分析标准,因为物联网可是一个万物接入的网络,每一个设备采集的数据不一样。如果使用了边缘计算,就可以单独针对每一个设备进行相应的计算和分析。当然,如果相同的设备或者相同参数的,可以进行复制使用同一套计算标准或算法。如果将计算脚本开放出来给用户,用户就可以自定义去添加自己的计算公式和行为。
边缘计算的模式和拓扑结构是什么样的呢。
比如要在一套数据采集系统里,以一个云服务器为中心,移动客户端,PC客户端或第三方接口等接入到云服务器获取数据,而数据采集方呢,由数据采集模块来连接到云服务中。
数据采集模块可以采集PLC,变频器,智能仪表等,将数据上传到云服务器中,由服务器进行数据分析和计算,然后PC或移动客户端,第三方接口就可以获取数据分析的结果。但是这种情况下,随着设备的接入越来越多,云服务器的负担也会越来越重,而且接入的PLC,控制器等的种类也越来越多,原来的云服务数据计算模式难以满足越来越复杂的应用。这时候边缘计算就应运而生了。
在原拓扑结构不变的情况,可无缝引入边缘计算。在数据采集模块端开放边缘计算功能,将复杂的计算,策略,规则等,由数据采集模块进行运算,得到输出结果后,只需要将结果上传到云服务中。再由PC客户端,移动客户端及第三方接口从云服务获取。
比如数据采集模块需要采集一个电表,电表能采集的数据有电流,电压,偏偏没有功率。当然现在的电表采集不到功率很少了,只是举例。
那怎么办呢,偏偏客户很想看到功率。那在没有边缘计算的时候,为了要看到功率,只好在云服务里,增加一定的计算规则,将采集到的电流和电压通过计算得到功率。如果有1000个电表,云服务器就要对这1000个电表进行计算。这就增加了云服务器的工作量和负担了。
如果有了边缘计算,那么在数据采集模块,就可以添加计算功能,直接将采集的电流和电压通过计算得到功率,只需要把功率上传给服务器就可以了。这样,即便有50000个电表,云服务也毫无计算压力,因为它并不需要计算。
这就是通俗的讲一讲边缘计算。疫情对全球经济有着巨大冲击,有调查表明80%的中小企业营收下滑,有30%的中小企业营收减半。对于企业来说,外部因素不可控,要想提升经营管理水平,首先要从内部发力。古往今来,创新是经济发展与社会进步的源动力,也是企业得以生存发展并保持竞争力的关键要素。这几年,在大数据、云计算、人工智能等新技术的加持下,企业开始构建数据赋能体系,充分挖掘数据价值,提升数字化能力,试图为经营管理赋能。数字化转型升级是企业的出路,企业能够把数字化有效的融入到企业文化,融入到企业的血液,才能够在未来5到10年的竞争中脱颖而出,那么成长型企业如何实现数字化转型呢?我们先看看成长型企业实现数字化转型分为哪三个方面。
第一,商业模式的做法,将企业的线下销售营销的过程转为线上。企业与客户的全方位触达,通过线上来进行交互,甚至让客户参与到设计产品和提供服务的过程当中。
第二,未来企业的竞争通常是关乎运营效率。企业需要关注一个内部的管理制度和管理流程,以及运营的效率,同时通过数字化的手段来洞察运营的状态,找到关键问题并持续改进,除了企业自身还不够,企业还需要上下游的客户和供应商合作伙伴。
第三,企业专注一个核心的目标,力争做到实时决策、自动运营,类似奔跑运动员。首先企业需要战略能力,企业在瞬息万变的市场竞争当中,大脑能够迅速选择正确的方向,并且有效控制四肢执行,同时还需要有一个强健的循环系统和神经传导系统,这个循环系统就是企业中台。
企业数字化转型怎么做?
1)企业数字化转型应当涉及企业的业务、管理流程、人才和组织等各个方面是企业借助技术手段创造新的商业模式和新价值的过程。
2)不能头痛医头,而是要有统一的愿景,从合规和战略的层面出发,通盘考虑业务、运营、人才、技术等各方面,转型才能落到实处,真正赋能业务促进创新和发展。
3)根据企业不同情况,应根据外部市场环境、自身行业和企业业务发展情况、数字化现状,提前规划三至五年的数字化转型路线图。
4)综合运用转型的景点模式和敏捷模式,既有整体的数字化转型愿景和目标,又能小步快跑,提升创新能力。网络中的节点,像是家里的PC机咯,手机咯都可以叫终端设备
开机率:自助设备实际处于运行状态时间与应工作时间之间的比率。计算公式为 开机率=实际开机时间÷应工作时间×100%。
关机率:自助设备实际处于非运行和非维护状态时间与应工作时间之间的比率。计算公式为关机率=实际关机时间÷应工作时间×100%。
维护率:自助设备实际处于维护状态时间与应工作之间时间的比率。计算公式为 维护率=维护状态时间÷应工作时间×100%。
全功能服务率:自助设备各模块均正常运行状态时间与自助设备实际处于运行状态时间的比率。
非全功能服务率:自助设备部分模块故障处于运行状态时间与自助设备实际处于运行状态时间的比率。
缺钞率:自助设备处于缺钞状态时间与自助设备实际运行时间的比率。
开机率、关机率、维护率之和为100%。全功能服务率、非全功能服务率之和等于开机率。通信故障率、硬件故障率、其他故障率之和等于关机率。自助设备开机率和缺钞率是衡量管理机构自助设备管理水平的主要指标。
作好自助设备监控工作是提高开机率的有效保障。各二级行应落实专门岗位负责自助设备的监控工作,起到及早发现故障、及早解决故障的作用。特别是近年来各行离行式设备开始大量布放,如不利用监控系统进行 *** 作,其他渠道较难尽早发现设备故障。同时,通过监控,对设备的故障模块能够初步定位,从而缩短维护时间,起到促进开机率提高的作用。
营业网点人员应作好对自助设备的日常检查,察看耗材的使用情况,避免出现缺少流水纸、客户凭条纸引起设备的停机,特别是下班前的检查要注意估算耗材使用量,如不更换耗材是否会引起下班后自助设备停机。对于网点管理模式的自助设备,网点人员还必须每天察看自助设备现金使用量,做出合理的清机、加钞计划,避免设备出现缺钞的情况。
自助设备的开机率等业务指标的考核数据主要来源于自助设备监控系统。如因网点撤并、设备更换等设备停止使用,在监控系统中要及时作相应信息变更,否则此部分设备仍会纳入开机率的考核数据中,会严重影响分行的开机率整体水平。部分网点装修、人为破环原因确需阶段性暂停使用的设备,如未及时在监控系统中作停机处理,也会影响到分行的开机率。各行在出现上述情况时,应该及时申请在自助设备监控系统中作相应的信息处理,避免出现考核数据错误而影响开机率的情况出现。
物联网云计算:借助物联网和云计算模型,您基本上可以在云中推送和处理您的感官数据。您有一个摄取模块,它接收数据并将其存储在数据湖(一个非常大的存储)中,然后对其应用并行处理(可能是 Spark、Azure HD Insight、Hive 等),然后以如此快的速度消耗调整信息以做出决策。
物联网雾计算:有了雾计算,我们变得更强大了。我们现在使用本地处理单元或计算机,而不是将您的数据一路发送到云端并等待服务器处理和响应。
物联网边缘计算:物联网是关于捕捉微交互并尽可能快地做出响应。边缘计算使我们离数据源最近,并允许我们在传感器区域应用机器学习。如果您对 边缘计算与雾计算的 讨论有所了解,您应该了解边缘计算完全是关于传感器节点的智能,而雾计算仍然是关于可以为数据繁重的 *** 作提供计算能力的局域网。
物联网的MIST计算
其实转型并不需要资金(产品品种不变),比如:管理方式转型,思想方式转型等等。以下主要阐述转型相关的问题:一、企业转型升级所带来的问题,有可预见性的和不可预见性的
转型之初,应切实做好自身对于转型后认识,即包括:1)转型前后的企业在市场中的可能会的定位、风险;2)转型前后,公司内部所欠缺和和所溶合部分,包括部门单位、人员、岗位新定义;3)转型之后,公司现有的体制和规章会有哪些先建性调整和预防;4)如何将转型前后之间缓和期最大化地优化和缩短。
二、所遇到的困难及其帮助,因困难自身的不可预见性和偶然性而随机不定,当然问题也是自然而然会产生,究其不同类型的问题,可作定性定量分析:
1)首先是公司内部还是外部问题
2)内部问题——是人员、部门、方法、工艺、大小团体,还是个别人的不稳定,如果是,应有针对性,当断则断,先有预备后有后备,先有思想后有行动,先有问题后有解决,先有解决后有保留,先有行动后有补充,先有繁难后有简易,总之,内部问题内部解决,不可解决的话,尽量稍微调整以达磨合,实在不行,当机立断,不可过长。
3)外部问题——是市场、物流、资金、上层管理链,还是公司目前决断有误,如果什么都是问题,则从基本到全面,从大体到细小,问题自身是个战略定位与调试修复的过程,要有最基本敬业精神遇山开山、遇河搭桥。
4)内外不清——因为某些问题不好具体定义为企业内部可以决定,还是外部来安排,那么就得稳定求险、适中求改。
三、企业用工难,尤其是基层 *** 作人员,随着地域薪资福利差别越来越小、企业间选择人力资源缩小,那么带动用工荒就不可避免。要解决此类问题,要通过多方渠道,广纳员工源,提高利益性,更改用工类型来解决。在企业之间竞争,要参考自身企业内部员工的承受心态,在变化中,得以临时的解决,寻找暂时的突破口。最终需要的是提高企业自身领导意识,提高工艺技术性,提高人员利用率,缩小和弥补高工资额的差距。大数据七大趋势令人振奋
跟着小编一起来展望2016年大数据发展的七大趋势。
1算法(Algorithms)的崛起
大数据已过时,算法正当道。数据已经成为一种商品,每个组织都能够收集和存储大量的数据。分析大数据也不再那么引人注目了。每个组织都可以聘用或培训大数据分析人员来了解数据模式。
2016年,人们更加关注对已接触数据采取什么行动。算法将大行其道。算法能够定义行为,它们是非常专业的软件,能够很好地执行专业的指令,远比人类做的要好。例如,当你访问一个网站时,根据你手上的资料,快速确定最合适的广告。或者在大量的交易数据中找出异常值来甄别欺诈行为。
这些算法是非常专业的人工智能,不是已经存在多年的普通人工智能所能比的。但是,非常专业的AI已经存在,2016年我们将见证算法商务的崛起。
2数据湖服务作为一种解决方案(Data-Lake-as-a-Service Solutions)
2015年,我们已认识了数据湖。企业从M2M连接、社交网络和远程工作人员积累了越来越多的数据,数据湖将成为他们的重要数据存储工具。
据Gartner称,“到2020年,信息将被用于重新创造、数字化、或消除80%的业务流程和产品(相比于10年前——2010年)”。在传统的存储解决方案中,数据之间是相互孤立的。数据湖与之正好相反,它允许存在各处的原始的、质朴的信息字节相互整合、分析。数据湖能够帮助你实现商业的数字化,使之真正成为数据驱动的商业,就像Gartner对2020年的商业预计一样。
由于数据湖带来了相当多的挑战,在2016年,我们将看到数据湖管理的未来:数据湖服务作为一种解决方案,为您的数据湖提供一个完整的管理方案。
数据湖服务将提供主动式存储方案,通过整理大量的结构化和非结构化数据,大量的应用才能够用于对其进行加工处理,包括企业数据仓库或开源技术,如Apache Hadoop或 Spark。一个使用了数据湖服务的企业,每个月仅需要为十亿字节支付几美分。
在2016年,我们将看到越来越多的大数据供应商提供这样的解决方案:给企业提供一个完整的、易于使用的、可扩展的解决方案,省去企业自建数据湖的麻烦。由于数据湖在大规模数据存储和分析方面具有巨大优势,数据湖服务解决方案将被用于许多组织中。尤其是规模较小的组织,例如互联网领域的初创公司,将从数据湖服务方案中获得数据湖所有的益处,省去了创建和维护数据湖的所有麻烦。
3 区块链将被各行各业所接受
在过去的几年中,我们看到区块链主要应用于比特币,但区块链技术提供了更多的可能性。在2016年,我们将看到很多行业将采用区块链。
一个区块链可以被看作是数字事件的一个公共分类帐或记录。这个公共分类帐由许多不同当事人共享,计算地理上和计算上的孤立节点,并且只有该系统的大部分成员都同意的情况下,这个记录才能被更新。只要新信息输入到分类帐,它就不能被擦除,而且所有人可见。因为区块链的存在,所有输入到分类账上的信息都是全透明的。
区块链的一个关键优势是:该系统是完全透明的,任何人都可以在不损害个人隐私的情况下,看到哪些交易输入到分类账。您可以在不透露当事人个人隐私的情况下,记录事件发生的事实,甚至记录它的正确性。
虽然大多数人将区块链与加密的比特币联系在一起,其实它还有更多的可能性。尤其是金融业将迎来的区块链技术的全面开花。世界上许多大银行正在试用区块链,更或正在对区块链初创公司进行投资。UBS(瑞银集团)已经创造了一个区块链实验室,Santander正在研究如何使用区块链管理他们的贷款活动,Goldman Sachs (高盛集团)投资了一个区块链初创公司,并且有一个大财团(R3 ’s global bank partnership),负责调查的区块链的潜力。
然而,在2016年我们将看到,不同行业的多个应用程序使用区块链。基本上任何存在数字化交易的行业都将会受益于区块链技术,从金融业,法律行业,房地产,公证员,赌博,发布到数据存储。未来一年,更广泛的采用区块链将迫在眉睫。
4人力资源分析
对于大多数组织而言,人才是最重要的财富;对于大多数高级管理人员而言,人才是重中之重。根据普华永道的研究,34%的美国首席执行官们“非常关注”组织中关键技能的可用性。因此,高级管理人员正在寻找其人力资源的确切数据,所以,2016年我们会看到人力资源分析将迈出一大步。
人力资源分析虽然是人事部门新的业务领域,但为了更好地提高人力资源的投资回报率,该业务增长极为迅速。人力资源分析可以被定义为一项大数据技术,使用人力相关数据片段优化商务产出、解决商务问题。因此,人力资源分析越来越重要。
人力资源分析可以帮助回答一些问题,例如:我们在组织内是否有正确的技能搭配?我们的员工,特别是那些优秀的员工是如何工作的呢?我们能更好地预测企业未来的***是谁么?员工的精神状况怎样……如此等等。
在一个过热的市场,对人才的争夺战愈演愈烈,优秀的大数据科学家和数据分析师资源越来越稀缺,越来越贵,因此发现人才不是一件容易的事情。对于一个组织而言,了解员工的驱动因素,并且很好的激励他们变得越来越重要。因此,在2016年,更多的组织将致力于人力资源分析,这些领域的初创企业数量将迅猛增长。
5智能政府致力于提高社会和公民体验
对于那些大的商业组织而言,大数据已经成为通用语言。在适应新趋势方面,政府是缓慢的,但是在2016年,我们会看到更多的国家、地区和地方政府会采用大数据技术来提高社会和公民的体验。
政府正在尝试用大数据技术来提高公民体验的管理,通过政府分析、把数据驱动决策引入到一线员工的管理,从而创造无摩擦交易,提高政府绩效。一个政府,或智慧政府,将会于实现目标做出重要贡献,在2016年,在全球范围内将会有越来越多的政府向智能政府方向发展。
我们已经看到一些例子。迪拜当局正努力把政府变成智能政府。他们已经开始践行提高客户(例如,公民)体验,并推动知识经济的实践。他们已经为数十个智能政府服务创建了一个单独的、安全的登录界面,大量的服务也都支持移动应用程序。
最好的智能政府的例子就是爱沙尼亚。这个仅有130万公民的波罗的海国家被联合国提名为“具有十年最优电子政务内容“ 。每一次与外部的或内部的互动都是数据化的,爱沙尼亚政府对于自己的数据具有完全的掌控。此外,议会正在推行无纸化办公,电子签署法律文件,全电子化商务,因为所有的服务都是互联的,所以报税非常简单。
尽管爱沙尼亚政府远远走在同行的前列,但这个进程远没有停止。在荷兰,国家政府的目标是,截止到2017年,从与政府取得联系到缴税,全部实现工数字化。
因此在未来一年,我们将在世界范围内看到越来越多的政府开发智能方案。我们也将看到更多的政府开放自己的数据集,应用开放的API(应用程序编程接口)使初创公司和企业够轻松地与政府部门对接。这不仅能加速政府的智能化过程,甚至可能收获更多。
6增强大数据安全、防止数据泄露
伴随着数字化进程,物联网将物物连接为网络,大数据的安全变得越来越重要。在过去的几年里,我们已经遭遇了许多大规模的数据泄露事件,包括Ashley Madison hack(婚外情网站)和TalkTalk公司(英国宽带服务供应商)的黑客攻击事件。
基本上,任何组织未来都可能被黑客攻击,如果没有被黑客攻击,说明其根本不重要。因此,任何组织不仅应该把重点放在防止安全漏洞,在遭遇黑客攻击时,还要实施正确的危机应对计划。
2016年,我们会看到更多的数据泄露新闻,更多组织犯傻试图掩盖,更多由物联网引起的对实物的攻击。特别是后者,可能会对数据安全产生深远影响。毕竟,我们已经看到过黑客远程 *** 控毁灭了一辆正在高速路上行驶的吉普车。
因此,2016年,我们将看到组织是如何管理他们的数据保证数据安全,包括黑客攻击前、攻击中、攻击后的各种管理措施。组织将增加安全开支,与有道德的黑客合作提高数据安全,改善内部流程使得员工对于黑客更加警惕。毕竟,通常情况下人是公司安全协议中最薄弱的一环。
7智能机器带来的雾分析(Fog Analytic s)起步
雾计算正在迅速地获得大量动力。雾计算是指推进连接到物联网的终端设备和存储数据的云计算之间的存储、传输和计算。随着物联网的进步,雾计算势头越来越猛,因为传感器变得相当精密,它们现在可以收集大量数据。
想象一下,你有一个网络,连接各种设备,它们产生了大量的实时数据。在设备和云之间来回传输数据变得尤其昂贵,而且花费时间太长。采用雾计算或雾分析。雾分析使得智能机器在当地执行一部分分析,只将分析结果发送到云端。
据Gartner称,智能机器是新的现实。因此,在未来的一年,我们将看到更多的智能机器有着越来越多的精密传感器,能收集大量的数据。组织将不得不转向雾分析,以便数据易于管理,保持洞察力可用并尽可能降低成本。
令人振奋的新一年
在大数据方面,2016年将是令人振奋的一年。智能算法将接替现在由人类来完成的许多业务。我们将看到数据湖服务作为一种服务解决方案出现,帮助企业以最少的工作更多的使用数据。越来越多的行业将开始试用数据区块链技术(blockchain technology)以改变他们的行业。
组织将转向人力资源分析,以更好地激励员工,争夺稀缺人才。政府终将看到大数据的益处,并向智能化方向转变,但是组织和政府将不得不警惕黑客攻击,并采取适当措施。最后,由于智能机器将出现在各行各业,雾分析时代正式开启。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)