物联网如何学习?

物联网如何学习?,第1张

想要成为一名物联网工程师,可以学习以下几个方面:

1、物联网产业与技术导论:全面了解物联网RFID、M2M、传感网、两化融合等技术与应用。

2、C语言程序设计:物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准。

3、Java程序设计:物联网应用层,服务器端集成技术,开放Java技术也是必修课,同时需要了解Eclipse,SWT,Flash,HTML5等技术使用。

4、TCP/IP网络与协议:TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能。

5、嵌入式系统技术:嵌入式系统是物联网感知层和通讯层重要技术。

6、无线传感网络:学习各种无线RF通讯技术与标准,Zigbee,蓝牙,WiFi,GPRS,CDMA,3G,4G,5G等。

扩展资料

物联网的基本特征

1、整体感知

可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。

2、可靠传输

通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。

3、智能处理

使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。

导读新年伊始,在2020年受疫情影响的大环境下,物联网也迎来了更多充满戏剧性的挑战与变革,在疫情爆发后,各地采取的一系列措施及发生的这大大小小的的事件背后,多多少少都有物联网的身影,为此,在这里小编整理了相关报告后,和大家说说2020年物联网在全球的主要进展,分享给大家以供参考和借鉴!下面我们一起来看看物联网2020年回顾:十大重要进展。

Part I: Covid-19对IoT 2020的影响

受疫情影响,公众对物联网的兴趣下降了15%

人们通过Google搜索“物联网”话题的频率在2020年骤然下降。自2020年3月疫情大流行以来,这一下降比例达到15%;此后,“物联网”话题搜索量一直保持相对稳定并处于较低水平,也没有回升迹象。物联网显然不像其它话题那样在公众中扮演重要角色,例如:在同一时间范围内,公众对游戏的搜索兴趣猛增了约65%、对“在家工作”的兴趣增加了104%、对“失业救济金”的兴趣猛增了250%。在对3000多个财报电话的分析显示,在2020年第二季度,“IoT”一词的使用量呈类似下降趋势。但是,有关物联网,尤其是“工业物联网”的讨论在第三季度又重新开始。

尽管疫情大流行,但2020 IoT市场仍然强劲

尽管Covid-19疫情不断,并且
2020年全球GDP下降了5%,物联网市场在2020年仍在增长(无论是支出规模还是连接设备总数)。虽然有少量物联网项目因各种原因(如在封锁期间无法建立基础设施)而停止或推迟,但大多数物联网项目在2020仍在继续。

事实上,2020年是智能设备的一个拐点——活跃的物联网连接数量(例如:连接的汽车、智能家居设备、连接的工业设备)等,有史以来第一次超过了非物联网连接的数量(例如:智能手机、笔记本电脑和台式机)。目前全球有217亿活跃的连接设备,其中54%(117亿)是物联网设备连接。到2025年,预计将有超过300亿个物联网连接,即地球上几乎每人有4个物联网设备。

十余个物联网主题随疫情加速发展

物联网在应对疫情中起着至关重要的作用。一些以物联网为中心的用例在帮助世界应对疫情方面发挥了(并将继续发挥)重要作用。最值得注意的包括工作场所、医院和其它基于物联网的接触者追踪(例如:Concept
Reply的跟踪和定位系统),以及整个疫苗供应链中的产品跟踪和验证(例如:Controlant)。

对2021年的前景持谨慎乐观态度

进入2021年,物联网技术的整体情况,看起来很乐观。人们普遍认为,任何因Covid-19对业务的负面影响都将在2021年逐渐消失,新的“数字化转型浪潮”将推动物联网市场的发展。企业将加速发展的主题之一是“新技术支持的商业模式”,其中许多新的商业模式将由互联的物联网产品来实现。企业关注的另一个主要主题是“人工智能”。

Part II: IoT 2020十大进展

最大的物联网新势力:小米

2020年1月,来自中国的电子制造商小米宣布计划在未来5年内至少投资72亿美元用于5G和人工智能(AIoT)。新的推动包括对智能电视、无人机、电动滑板车、空气净化器、路由器、安全摄像头等一系列消费和企业物联网设备的重大投资。

物联网在对抗Covid-19中的最大贡献:挽救生命

在2020年初,物联网行业没有人能够预见到,IoT技术将在这一整年中为拯救生命而扮演重要角色。伦敦帝国理工学院于2020年6月进行的一项被广泛引用的研究估计,在第一波Covid-19大流行期间,社交距离仅在欧洲就挽救了300万条生命。虽然这些被挽救的生命大多可以归功于人们只是待在家里、戴上口罩和避免接触,但物联网技术无疑在一些情况下阻止了进一步的传播。

许多物联网厂商竞相推出社交距离工具(包括BoschIO的工作场所隔离和联系人追踪解决方案,Software AG和Dell的Smart Social
Distancing解决方案,或Concept Reply的追踪和定位系统等)。

位于德国莱比锡的Goebecke面包店只是使用这种解决方案的众多企业之一。该企业老板介绍,工作场所的音频提醒和对员工数据的分析能力,都使员工更加谨慎、意识更强,这些员工随后变换了各自之间的距离。

最近,用于Covid-19的物联网的重点已经转移到疫苗供应链监控上,以确保疫苗安全交付,不发生产品丢失、篡改或变质。例如,辉瑞公司(Pfizer/Biontech)选择了冰岛的初创公司Controlant来监控其Covid-19疫苗的配送。

加速最快的物联网垂直领域:医疗保健

多年来,由于行业的高度规范性以及缺乏对医疗数字化的支持和紧迫性,在医疗环境中实施物联网项目被证明是很麻烦的。

现在,越来越多的证据表明,Covid-19已经导致了医疗保健领域的数字化爆炸,特别是在医院。美国食品药品监督管理局(FDA)在2020年5月发布了多项临时政策,以在2020年支持数字化工具。德国在2020年10月首次允许医生开出针对特定疾病的数字健康应用(例如,一款有助于治愈焦虑症的应用)。

在大流行期间激增的应用之一是“远程医疗”,即医生通过视频会议治疗患者。医生报告说,远程医疗通常被视为只是迈向数字诊断的第一步,它依靠物联网设备从远处诊断病人。数家医院于2020年开始进行试验。2020年12月,一名伦敦外科医生在加利福尼亚用5G技术对香蕉进行远程手术的视频在网上疯传。

2020年最大的物联网融资:Samsara

Samsara又成功了。2020年5月,在第一次Covid-19大封锁期间,该公司又筹集了4亿美元,旨在进一步扩大其工业物联网业务。本轮融资对该公司的估值为54亿美元,较2019年投资时估值下降14%。首席执行官Sanjit
Biswas在宣布这轮融资时,还宣布裁员300人(占劳动力的18%),这是由于Covid-19对关键垂直运输系统的影响。

2020年值得注意的顶级投资(与物联网相关)包括:

最重要的技术标准化:5G Release 16

2020年7月,3GPP标准机构达到了一个重要的里程碑:发布版本16,这是5G技术的第二套规范,也是5G
IoT的关键一步。构成版本16的一套新规范包括对“超可靠、低延迟通信”(eURLLC)、定位功能以及对TSN(时间敏感网络)的支持等方面的重大改进,所有这些方面对于各种物联网用例的物联网连接都非常重要,尤其是对于高端应用,如工业物联网领域的应用。此外,版本16还可以在新的5G核心网上部署和管理NB-IoT和LTE-M技术,使5G网络可以通过这些技术管理大规模和低复杂性的物联网。当前,全球约有2亿个IoT连接使用NB-IoT
/ LTE-M的产品。预计,面向高端应用的5G物联网将在2022年及以后兴起。

最著名的新流行语:AIoT

多年来,人们一直认为,物联网的真正价值可以通过应用于物联网数据流的AI/ML算法来解锁。因此,事后看来,“AI + IoT=
AIoT”在2020年出现并成为一个新流行语也就不足为奇了。在2020年12月,Google对这个话题的搜索量大概比12个月前多了70%。有趣的是,这个词似乎起源于中国(而不是像“
IoT”一词起源于美国)。华为和小米以及台积电(TSMC)这几年一直在推崇人工智能物联网的概念,即人工智能和物联网的融合。

2020年,许多“非中国”公司在品牌推广工作中都使用了这个术语。美国工业软件提供商Aspen Technology于2020年8月宣布了其新的工业40
AIoT
Hub,瑞士网络安全公司Wisekey于2020年9月推出了以AIoT为中心的新数字战略。在2020年推崇这一术语的公司的其它例子包括总部位于新加坡的ASM
Pacific Technology和总部位于美国的分析软件提供商SAS。

最大的物联网相关收购:Nvidia-ARM

2020年9月13日,英伟达宣布有意收购ARM,这是迄今为止最大的半导体交易,估值400亿美元。除了是最大的半导体交易外,此次收购有望为AI&边缘物联网带来新的技术创新。英伟达收购的主要业务板块是ARM的处理器IP,其中也有重要的IoT成分,尤其是边缘计算。ARM的IoT产品&服务集团(ARM的Pelion
IoT平台、MbedOS、SoC解决方案/安全、KigenSIM解决方案)将不参与此次交易。如果这笔交易获得监管部门的批准,可能会出现这样一种情况:中国企业永远得不到ARM的技术。这可能会进一步造成美中贸易关系的不平衡,从而使美国在半导体知识产权市场占据主导地位。

2020年的重要收购(与物联网相关)包括:

最雄心勃勃的新物联网连接技术:Amazon Sidewalk

2020年11月,亚马逊通知Amazon Echo设备和Ring安全摄像头的客户,Amazon
Sidewalk将很快推送到他们的设备上。Sidewalk是一个雄心勃勃的项目,旨在创建一个邻里共享的网络,让宠物或资产追踪器等物联网设备,即使在家庭Wi-Fi网络中断或超出范围时也能连接到互联网。这是通过将不同的Wi-Fi网络连接成一个低带宽网络,供不同用户的物联网设备使用的技术。

2020年9月,LoRa低功耗标准幕后的芯片公司Semtech宣布已与亚马逊建立合作伙伴关系,以合作构建网络;几个月后的12月,据报道LoRa联盟正在洽谈,也将加入并支持Sidewalk,使用开放的LoRaWAN标准,该联盟及其500多家成员公司都支持该标准。

最重要的政府举措:美国物联网网络安全改进法

2020年12月,《物联网网络安全改进法案》终于签署成为美国法律。其中,该法律要求美国国家标准与技术研究所(NIST)定期(至少每5年一次)更新物联网安全标准和指南。专家们希望,该法律能够促使制造商在设计物联网设备时考虑到一些网络安全功能(例如:使用安全编码实践、提供足够的认证、定期给设备打补丁)。

最大的IoT 2020 IPO:C3ai

2020年12月9日,C3ai上市(在纽约证券交易所交易,股票代码为“AI”)。C3是一个真正的物联网成功案例。该公司由美国亿万富翁Tom
Siebel于2009年创立,他因创立Siebel Systems公司而闻名,2006年1月该公司出售给甲骨文。C3ai最初叫C3
Energy,主要专注于电网、电表和公用事业的数字化,该公司后来(2016年)品牌更新为C3IoT,并将其关注点扩大到能源之外,作为一个横向物联网平台。近年来,该公司强调通用分析和人工智能能力,这也是为什么该公司再次将品牌重塑为C3ai。今天的C3ai声称它可以从5700万个传感器读取数据,但Siebel明确表示,重点是AI(包括非IoT应用)。2020年12月上市至今,股价已较开盘价飙升超过40%,估值近140亿美元(截至2021年1月8日)。

以上就是小编今天给大家整理分享关于“年度盘点|物联网2020年回顾:十大重要进展”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

题主是教育工作者吧?提供以下内容供参考:

大数据技术需要用到的自然科学与工程技术类基础课程包括:

统计学

数学

线性代数

概率论

数据结构

算法

计算机网络

数据库

计算机科学基础

物联网技术需要用到的自然科学与工程技术类基础课程包括:

电子学

通信原理

电路

传感器技术

网络技术

电子控制

控制系统

智能传感器网络

计算机网络

人工智能技术需要用到的自然科学与工程技术类基础课程包括:

统计学

数学

线性代数

概率论

算法

计算机科学基础

模式识别

机器学习

深度学习

自然语言处理

计算机视觉

这些基础课程可能会因具体的学校和专业的不同而有所不同。

一、元宇宙的6大核心技术
分类:
(1)基建:物联网技术、网络通信及算力技术、数字孪生技术
(2)底层:区块链技术、人工智能技术
(3)前端:交互技术(全息影象技术、脑机交互技术、传感技术)
1、区块链技术
对于元宇宙,区块链技术极其重要,是元宇宙的重要底层技术,元宇宙的最基础保障,同样一个文件很难区分谁是复制品,区块链技术完美的解决了这一点利用防赏改和可追溯性使得区块链天生具备了“防复制”的特点,区块链还为元宇宙带来去中心化的支撑,为元宇宙提供数据去中心化、存储-计算-网络传输去中心化、规则公开、资产等支持。
2、交互技术
交互技术为元宇宙提供了沉浸式虚拟现实验阶梯,例知VR、AF、MR全息影象技术、脑机交互技术及传感技术等。在这个世界里,内容可以由用户自己输入,带来了无限可能。
3、网络通信及算力技术(5G\6G、云计算、边缘计算)
元宇宙的续用会产生巨大的数据吞吐,为了同时满足高吞吐和低延时的要求,就必须使用高性能通信技术。“5G”具有“高网速、低延迟、高可靠、低功率、海量连接”等特性。“5G”时代的到来,将提供元宇宙的通讯技术支撑。此外,正处于起步阶段的元宇宙,若想实现沉浸式、低延迟、高分辨率等功能,提供用户易于访问、零宕机的良好的用户体验,离不开现实世界中数字基础设施的支撑,包括计算能力、3D视觉效果、虚拟现实技术、互联网连接和其他技术支撑,云计算是其中的重要组成部分之一。元宇宙的发展需要大规模的计算和存储,需要大量的数据交互。真实世界的计算、存储能力直接决定了元宇宙的规模和完整性。
4、物联网技术
物联网是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络 。感官是真实世界与虚拟“元宇宙”的链接,是元宇宙升沉浸感体验的关键所在。物联网的首要条件是设备能够接入互联网实现信息的交互,无线模组是实现设备联网的关键环节。
5、数字孪生技术(游戏引擎、3D建模、实时渲染)
数字孪生是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。数字孪生是一种超越现实的概念,可以被视为一个或多个重要的、彼此依赖的装备系统的数字映射系统。
6、人工智能技术
人工智能技术是使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。元宇宙中主要用到其中的计算机视觉、机器学习、自然语音学习、自然语音处理、智能语音等技术支撑。

扩展资料:

搭建元宇宙,目前有哪些技术难题有待突破?
1、新型显示技术
沉浸式的体验必然要求沉浸式的显示技术,目前在AR/VR显示领域,无论是显示器件还是图像处理与渲染算法,尚不能完全满足元宇宙应用的技术指标要求。市面上主流的AR/VR显示器件(主要是光学波导片)大多存在着重量大,功耗大,解析度差,色偏严重,常伴有眩晕感等问题,要获得一款又轻又好的显示模组,需要材料学与光学的重大突破。
2、算力约束
从计算架构角度看,元宇宙必然是一种“云-边-端”协同的模式。然而,目前无论是云端还是终端,主流芯片的算力储备远远满足不了元宇宙应用的要求。特别是端侧算力瓶颈巨大,这是因为端侧不仅承担了部分智能感知算法,且更重要的是承担了最核心的虚实融合的真实感图像渲染算法,这类算法算力要求巨大且要求超低功耗,目前主流的端侧计算芯片均不满足如此严苛的技术指标。
3、低时延通讯
元宇宙的核心在于无处不在、无时不在的交互,这些交互了产生天量的实时数据通讯需求。目前5G技术是否能够完全满足如此高带宽、高并发的实时通讯,依然是一个未知数,也许我们要等到6G甚至7G时代的到来才能圆满解决这些问题。
4、新型传感器技术
元宇宙应用对于用户态势感知的需求是前所未有的,对于用户全维度的信息感知(例如外观、位置、姿态、运动、各种生命体征、甚至心情、意图等)需要轻便而高可靠的全系列新型可穿戴传感器。
元宇宙将给我们带来无限的可能,大众可以准备拥抱它所带来的生活和工作方式的改变,期待生活更加美好,人生更加精彩。
而对于相关的企业与投资机构,笔者在这里想说的是,与其热衷于概念炒作,不如沉下心来积极投入到元宇宙相关支撑技术的研发投入中来。毕竟,如果能突破芯片、显示器件、传感器、计算架构等“卡脖子”的关键核心技术,未来才真正无可限量。

简述Inter,物联网,云端计算之间的区别以及联络

因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。

云端计算,物联网,人之智慧技术之间的联络, 人工智慧云端计算物联网三者之间的联络

人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。

日日月月科技云端计算和物联网之间的区别与联络是什么?

云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。

如何认识Inter与物联网、云端计算、三网融合之间的关系

物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。

云端计算大资料物联网之间的区别与联络 2250字左右我写论文

随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

基于大资料与物联网,云端计算之间的关系

物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。

因特网与物联网,云端计算,三网融合之间的关系

因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。

论述网格计算、云端计算、按需计算之间的联络与区别

云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。

详细阐述大资料,云端计算和物联网三者之前的区别和联络

1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13421353.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-02
下一篇 2023-08-02

发表评论

登录后才能评论

评论列表(0条)

保存