在过去的几年里,物联网蓬勃发展。根据行业研究,到2021年,全球将安装350亿台物联网设备,到2025年将安装7544亿台。本质上,作为一个技术驱动的互联设备网络,物联网有潜力更好地实现系统内的数据共享。它让机器和设备进行交互的能力将会对各行各业行业产生积极影响。
从使用物联网设备的数据密集型体验到基本的健康和安全需求,几乎没有什么趋势能够超越它,从而加剧了其重要性。
1连网设备制造商将投资医疗保健
远程医疗需求仍有望继续增加。据行业专家称,由于便利和更实惠的价格,消费者对数字医疗设备的兴趣越来越大,到2026年,该技术将增长至1856亿美元。
2物联网将在制造业普及
制造业和其他使用昂贵机器的环境已经体验到了远程监控的好处。在物联网驱动技术的帮助下,制造商和制药企业今年能够将工业资产与远程 *** 作连接起来,确保在大流行期间一切如常。根据行业报告,这些好处和积极影响有望在2021年为物联网带来大量投资。基础行业专家、特别是现场服务公司和工业设备公司将越来越多地使用此技术,从而使连网机器在2021年继续获得发展动力。
3行为互联网有望发展壮大
行为互联网(IoB)从各种来源捕获人们生活的“数字信息”,公共或私人实体可以利用这些信息来影响行为。
这里的一些有用的技术工具包括位置跟踪、大数据和面部识别。这一趋势凸显了将客户放在每个组织战略中心的重要性,以确保长期成功。
4智能建筑技术将推动员工体验转型
根据2021年的行业报告,智能建筑技术将专注于物联网应用,以实现智能办公举措。这些举措将包括智能照明、能源和环境监测,以及基于传感器的空间利用和活动监测。
物联网的体系结构可以分为感知层,网络层和应用层三个层次。
感知层。是物联网发展和应用的基础,包括传感器或读卡器等数据采集设备、数据接入到网关之前的传感器网络。感知层以RFID、传感与控制、短距离无线通信等为主要技术,其任务是识别物体和采集系统中的相关信息,从而实现对“物”的认识与感知。
网络层。是建立在现有通信网络和互联网基础之上的融合网络,网络层通过各种接入设备与移动通信网和互联网相连,其主要任务是通过现有的互联网、广电网络、通信网络等实现信息的传输、初步处理、分类、聚合等,用于沟通感知层和应用层。目前国内通信设备和运营商实力较强,是我国互联网技术领域最成熟的部分。
应用层。是将物联网技术与专业技术相互融合,利用分析处理的感知数据为用户提供丰富的特定服务。应用层是物联网发展的目的。物联网的应用可分为控制型、查询型、管理型和扫描型等,可通过现有的手机、电脑等终端实现广泛的智能化应用解决方案。
资料拓展:
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。
因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
物联网发展的主要前景和趋势包括以下4个方面:趋势1:人机交互性增强的数据和设备增长 到2019年底,将有约36亿台设备主动连接到Internet并用于日常任务。随着5G的推出,将为更多设备和数据流量打开大门。
趋势2:人工智能再次成为物联网的重要参与者 充分利用数据,需要通过人工智能提供计算机帮助。人工智能是理解收集的大量数据并提高其业务价值所必需的基本要素。人工智能将在以下领域帮助物联网数据分析:数据准备,数据发现,流数据的可视化,数据的时间序列准确性,预测和高级分析以及实时地理空间和位置(后勤数据)。 包括亚马逊,微软和谷歌在内的主要云供应商越来越多地希望基于其AI功能进行竞争。各种初创企业希望通过能够利用机器学习和深度学习的AI算法使企业能够从不断增长的数据量中提取更多的价值。
趋势3:VUI:语音用户界面将成为现实
语音占了我们日常通讯的80%,就像科幻中一样,与机器人交谈应该是常见的通讯方式,例如R2D2,C-3PO和Jarvis。在设置设备、更改设置、发出命令和接收结果中使用语音不仅在智能房屋,工厂中,而且在诸如汽车,可穿戴设备之类的设备之间都是常见的。
趋势4:在物联网上的更多投资
物联网是少数新兴和传统风险投资家都感兴趣的市场之一。智能设备的普及以及客户越来越依赖于使用它们执行许多日常任务,将增加对物联网初创企业投资的兴趣。客户将等待物联网的下一个重大创新,例如可以对您的面部进行分析的智能镜,如果您生病了,可以打电话给您的医生;将结合智能监控摄像头的智能ATM机;可以告诉您如何进食和饮食的智能叉子。吃什么,以及每个人都在睡觉时会关灯的智能床。
分析大数据
物联网传感器持续接收来自大量连接的异构设备的数据。随着联网设备数量的增加,物联网系统需要具有可伸缩性,以适应数据的流入。分析系统处理这些数据并提供有价值的报告,这将使企业具有竞争优势。由于数据是基于其类型挖掘的,因此必须对数据进行分岔以充分利用数据。根据问题数据的类型,可以进行不同类型的分析。比较常见的有:
流分析(Streaming Analytics)
流分析结合了来自传感器的未排序的流数据和来自研究的存储数据,以发现熟悉的模式。这种方法的实时分析可以在车队跟踪和银行交易等用例中提供帮助。
地理空间分析(Geospatial Analytics)
另一类大数据分析方法是地理空间,其中IoT传感器数据和传感器的物理位置的组合可以为预测分析提供整体视角。物联网世界中的对象数量众多,其通过无线网络发送数据的能力有助于获得详细的数据转储,这些数据转储可用于促进洞察。
挑战
对于目前所处的阶段,获取、分析和报告物联网数据是大多数企业的必修课。然而,由于这些技术仍处于发展阶段,这些组织面临着相当多的挑战。其中一些是:
集成
由于物联网数据通过多个渠道以不同的格式接收,因此收集和集成物联网数据具有挑战性。分析系统需要确保接收到的数据是一种可 *** 作的格式,足以确定见解。文本挖掘和机器学习技术通常用于从传感器中提取文本数据。然而,提取非文本格式的数据,如图像、视频不能快速完成。
关于如何对物联网数据进行大数据分析,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)