用战略性眼光
务实布局
“物联网的‘泡泡糖’(PPT)时代已经过去,现在要演示的是真q实d。”张伟(某物联网公司CEO,化名)想起一年前跟用户交流时如是感叹,以前多数公司都是停留在方案构思和宣讲阶段,只能靠PPT(幻灯片)来展示物联网,而现在,用户不再满足于PPT了,要看实际案例。如果说,去年来到无锡,每次参观者接触到的示范项目都是“太湖鱼”,那么今年的无锡,则呈现出更多物联网的应用。
本届博览会就是一次大秀场。以传感器、RFID、网络设备、嵌入式终端制造等为代表的物联网制造业,以通信网络为代表的物联网基础设施服务业,和以软件集成、应用开发等为代表的物联网服务业等产业链条上的各个环节都参与了此次博览会。
无锡,整个城市都散发着浓郁的物联网氛围,从2009年8月以来,物联网概念的公司比肩接踵地成立,分布在无锡新区、滨湖区等地。新区设立了10亿元产业培育专项基金,主要用于重点支柱产业促进和新兴产业培育,尤其是包括物联网在内的战略性产业,核心企业入驻园区,新区都给予3年贷贴息或一定比例的注册资本金配套;滨湖区位于长江三角洲腹地,也在集聚各类资源,已累计引进物联网及相关企业200家以上,其中注册资本1000万元以上的企业35家。
无锡市市长毛小平介绍说,2009年8月7日温总理在视察无锡时提到建立感知中国中心,同年10月13日国务院批准同意建设无锡传感网实验区,无锡迅速开始创建物联网、传感网的示范区,技术研发事业培育、人才引进等配套技术相继出台。到今天,有156个物联网项目已经签约,即将开工建设。
去年11月12日,江苏省人民政府、中国科学院、无锡市人民政府签署了共建中国物联网研究发展中心协议,先期以江苏物联网研究发展中心和中国科学院物联网发展中心为运作载体,总部设在无锡。发展中心第一任主任为叶甜春。据叶甜春介绍,发展中心采用了市场化的运作方式,吸纳社会资本,与工业界紧密合作,推进科技成果产业化。发展中心目前设立了综合协调部、战略规划部、应用总体部和技术服务部四个部门。
叶甜春认为,物联网与现有传感网和信息化技术的差异是:更大规模的节点覆盖、更综合的系统集成和更智能的信息处理。“物联网作为‘战略性新兴产业’,更需要‘战略性眼光’,物联网的培育和发展不可能一蹴而就,而是需要一个相当长的过程,这其中核心技术的培育和掌握是关键中的关键。”叶甜春发自肺腑地说,如果没有重点地一哄而上、遍地开花,可以推进信息化,但做不成物联网,或者成为又一个缺乏核心竞争力的“打工产业”。
中国科学院在知识创新工程中,对传感网/物联网领域进行了战略性的前瞻布局,已开展了近10年工作。包括传感器与芯片、信息网络与传输技术、信息处理与存储、软件等,传感器与芯片方面包括声学、振动、压力、温度、湿度、生物、化学等传感器。
借力运营商
物联网与互联网经常被相提并论,虽然两者的本质、内涵及应用模式都有差别,但发展路线却是可以作一定借鉴的。启明创投董事总经理邝子平认为,互联网发展初期,要感谢运营商,因为他们在互联网还没有明确形态时,就大力投入组建了骨干网,进行了一系列改造和完善,促进了互联网的快速发展。如今,物联网来了,运营商又开始摩拳擦掌。
中国电信所关注的领域包括节能减排、民生工程、防灾减灾等。中国电信副总工程师靳东滨透露,中国电信已经在着手建立物联网的企业标准。“因为国家物联网标准组有一些标准并没有出来,在这种情况下,中国电信建立了企业标准。目前,中国电信已经出台了七个关于M2M的标准,包括终端、平台设备和服务协议等。”
中国移动通信研究院副院长杨志强认为,TD-SCDMA的独特优势为物联网的规模发展提供了网络平台,TD的优势是:国家自主知识产权标准保障了通信的安全可靠;频谱效率更高、客户为每比特数据传输支付费用低;根据网络需求,可自行配置上下行资源,特别适合监控等非对称性数据传输业务。杨志强指出,物联网与TD结合有利于我国两大基础创新技术发挥协调作用。“TD与物联网都属于产业链形态的集群性创新模式,由于这种集群性和链条性,使得这两大基础创新在芯片、终端、测试、系统及应用等各个环节具有高度的重合和协同性,将会充分发挥基础协调作用。”杨志强介绍说。
据悉,中国移动M2M业务已经超过了500万终端,2009年,M2M业务收入超过7个亿,2010年,M2M终端用户超过500万,年增长率66%。M2M产业从分布上来看,电力行业占终端总数的35%多,主要应用为电力远程抄表、电力输配变设备监控;交通行业占终端总数的30%,主要应用为车辆定位管理。
中国移动在无锡物联网研究院建设完善了研发试验环境,拥有总面积达1050平米的基础实验室和支持2G和3G的应用开发测试系统;并建立了中国移动物联网体系架构。其目标是把每一个人、每一辆车、每一个家庭、每一个城市接入物联网。
事实上,物联网产业应该借力于运营商及大企业的投入,给物联网一个初始推动,逐步渗透入行业。
从集中走向分布
运营商所擅长的基础设施是一个方面,物联网最后落地,必然是在行业应用中。物联网应用的一个最普遍特点是从集中走向分布,突出表现在智能安防和制造业等领域。
本土著名安防企业博康集团总裁李璞认为,物联网可实现分布式的智能,分布于全系统内的智能化使人与物、物与物得以通信对话,从而自动获取物的动态特征、关联特征,实现所有物征动态信息互通共享。物联网为智能安防带来了一套完整可参照的“技术体系框架”,改变了现在安防领域局部智能、局部互通的限制。经过海量数据存储、处理及多传输通信技术,实现事前的分析预警、事发的实时报警和事后的侦查取证。
西门子中国研究院院长徐亚丁也认为物联网技术为自动化领域带来了更好的分布式解决方案。“制造业面临的大趋势是个性化定制需求、全球化的采购和生产。发达国家的现状是机器密集型,发展中国家的现状是劳动力密集型,两者都向大机器分布式模块化制造转变。”徐亚丁介绍说,采用物联网技术可以使生产自动化从集中走向分布,能够自动调整工序、灵活增减工序。物联网架构使模块可重用性得以提高,可进行重新配置组合以适应生产需要,减少资源浪费,还可以调整就业人口,使受良好教育的劳动力从事高附加值的模块设计维护。“分布式模块化生产系统的关键技术就是物联网,物联网技术使每个模块智能化,能够承担灵活多样的生产任务;使模块内部集成,实现机电/人机一体化。”可见,要深化物联网的应用,必须吃透其技术特性和优势,才能找准应用切入点。
资本市场冷静观望
在中国国际物联网(传感网)大会的投融资高峰论坛上,来自德同资本、红杉资本、启明创投、美国风投协会等风险投资领域的专家,围绕“风险资本如何孵化伟大企业”这一焦点话题畅所欲言。面对火热的物联网概念,资本市场的态度显得很冷静。
邝子平认为,物联网重点在B2B的市场,物联网早期的发展,更多仍然还是给集团客户解决其所需要解决的一些问题,而不是给最终用户提供一个娱乐或者个性化的平台。“不同于互联网,互联网更多关注B2C市场,物联网的商业模式跟互联网将非常不一样,进入的门槛不一样,它的销售周期也会不一样。”邝子平分析说,B2B业务在中国所面临的不确定性非常大,例如为行业用户或政府部门服务的物联网企业,要有能力协调好各方的关系。旷子平认为第一批成功的物联网企业很可能是做系统集成的,即整合各方的物联网资源,提供综合物联网解决方案,而并非纯技术型企业。
中国科学院院士何积丰在谈到物联网时也提醒产业界,物联网刚刚起步,对其期望值不要太高,实际上产业界对物联网领域,从技术和体制上都还没完全做好准备。
何积丰建议,物联网产业在上项目的时候要考虑“先民生后重大基础设施”,在“十二五”规划中一个重要的元素是关注民生,他建议在无锡先做一些跟民生相关的项目,如教育、医疗试点等。
除了要撬动资本市场外,国家在整个物联网产业的发展中也起着重要的作用,包括早期的示范及推动、行业标准及法则法规的确定,特别是在营造良性竞争环境、降低产品成本方面,从国家层面的协调与布局将起到很大的作用。
今年8月,中国传感网国际创新园在太湖国际科技园内建成启用,中国物联网研究发展中心等多个研发中心成为首批入驻单位。
“2010中国国际物联网(传感网)博览会”掠影
2010中国国际物联网(传感网)博览会以“感知科技、感知未来”为主题,围绕信息的感知、传输、处理、应用四大核心领域,集中展示物联网产业链各个关键环节的国内外新技术、新产品、新装备、新工艺和新的解决方案,突出展示物联网在工业、农业、电力、交通、物流、环保、水利、安保、家居、教育、医疗、园区等12个领域应用所带来的高品质生活、高效率管理和高科技网络。博览会展示总面积15000平方米,参展及出席单位包括中国移动、中国联通、中国电信、IBM、微软、华为、航天信息、清华同方、大唐电信、CETC、东软集团、国网信通、美新半导体、长电科技、华润微电子等众多业内知名企业,共200多家来自世界各地的物联网产业链企业参加了展览。参展企业涵盖了产业链上游的芯片和传感器制造商,中游的应用设备提供商、软件与系统集成商、软件与应用开发商,以及下游的海量数据处理和信息管理服务提供商。
物联网疫苗冷链运输车。要使民众用上放心安全的疫苗,疫苗冷链运输环节至关重要。近期,宁波凯福莱特种汽车有限公司正式推出了历时三年研发的我国首款物联网疫苗冷链运输车。在疫苗运输前能预先了解冷藏车状态,对运输的整个过程实时监控、记录,避免车辆内冷冻机组、箱体密封问题引起的故障。该特种车实现了疫苗运输工具的智能化、感知化、网络化,使传统的冷藏车变成了具有物联网功能的专业网络信息终端。
平安城市。联通结合WCDMA网络和视频终端采集系统,利用现代信息通信技术,提供公共场所以及重要场所的视频监控、移动执法等多种综合管理信息服务,系统前端数据通过视频监控系统采集并传输到市、区监督指挥调度中心,实时监控并对紧急事件做出快速响应和应对,防范和处理危害城市公共安全的行为。
食品溯源。消费者只要用手机拍摄食品包装标签上的二维码,就可查询到相关食品的原材料和生产程序等,这种产品可溯源功能大大方便了消费者,为消费者放心消费提供了保障。
感知健康。无锡矽丰展示的基于物联网和云服务技术的感知健康体验中心及健康管理服务平台,用以达到提高人们健康水平的目的。
瑞孚特感知停车。车辆电子标签技术为保安、停车及进出管理提供独立、不间断的系统设备,可以实现对商业区及社区的方便管理,确保只有经过许可的车辆进入。系统还可以提供车辆定期出入及停车费用管理数据。掌握车辆动态情况,分析车辆运行规律,采取有效防范措施,实现车辆调度派遣无纸化、进出场区识别自动化。
物联网比特实验室。无锡爱睿芯电子有限公司把目光放在了物联网教育市场。实验室主要面向青少年开展物联网方面的宣传、培训和体验等活动。通过数字化的实验、积木化的游戏、个性化的作业和整合化的展示等方式,使学生在互动式、体验式的快乐氛围中,找到适合自己特点的发展方向,更快地接受最新的科技知识,锻炼自主学习的能力。物联网的英文名称为"The Internet of Things” 。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,扩展到了任其用户端延伸和何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、 全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
EPC系统是一个非常先进的、综合性的和复杂的系统。其最终目标是为每一单品建立全球的、开放的标识标准。它主要由全球产品电子代码(EPC)体系、射频识别系统及信息网络系统三大部分组成。
(1)EPC编码标准
EPC编码是EPC系统的重要组成部分,它是对实体及实体的相关信息进行代码化,通过统一并规范化的编码建立全球通用的信息交换语言。
(2)EPC标签
EPC标签是装载了产品电子代码的射频标签,通常EPC标签是安装在被识别对象上,存储被识别对象相关信息。标签存储器中的信息可由读写器进行非接触读/写。
32 EPC系统特点
(1)开放的体系结构
EPC系统采用全球最大的公用的刀又TERNET网络系统。这就避免了系统的复杂性,同时也大大降低了系统的成本,并且还有利于系统的增值。梅特卡夫(Metcalfe)定律表明,一个网络大的价值是用户本系统是应该开放的结构体系远比复杂的多重结构更有价值。
(2)独立的平台和高度的互动性
EPC系统识别的对象是一个十分广泛的实体对象,因此,不可能有那一种技术适用所有的识别对象。同时,不同地区,不同国家的射频识别技术标准也不相同。所以开放的结构体系必须具有独立的平台和高度的交互 *** 作性。EPC系统网络建立在INTERNET网络系统上可以与INTERNET网络所有可能的组成部分协同工作
(3)灵活的可持续发展的体系
EPC系统是一个灵活的开放的可持续发展的体系,可在不替换原有体系的情况下就可以做到系统升级。整体的EPC网络 *** 作依赖于RFID系统和网络应用系统的介入,使产品信息有效的传播。安装在不同需求链环境的解读器可以读取标签中储存的产品数据。因此供应链数据可以通过网络及时地检查、更新或者交换信息。
33 EPC编码编码标准
EPC码是新一代与EAN/UPC码兼容的编码标准,在EPC系统中EPC编码与现行GTIN相结合,因而EPC并不是取代现行的条码标准,而是由现行的条码标准逐渐过渡到EPC标准或者是在未来的供应链中EPC和EAN.UCC系统共存。EPC中码段的分配是由EAN.UCC来管理的。在我国,EAN.UCC系统中GTIN编码是由中国物品编码中心负责分配和管理。同样,ANCC也即将启动EPC服务来满足国内企业使用EPC的需求。
EPC码是由一个版本号加上另外三段数据(依次为域名管理者、对象分类、序列号)组成的一组数字。其中版本号标识EPC的版本号,它使得EPC随后的码段可以有不同的长度;域名管理是描述与此EPC相关的生产厂商的信息。
第四章 物联网在家庭中应用
随着时代的发展,中国已经逐步进入了老龄化社会,以后我们社会面临的现状将是一对年轻的夫妻,在照看自己小孩的同时,还要照看2~6对老人,这就为全社会出了一个难题。每家都雇保姆,显然不现实;那么,只能通过科技的手段来解决这个问题了,靠提高家庭的生活品质、方便家庭与外界的信息交互、用传感节点感知家里发生的情况等,这就为家庭物联网的实现奠定了社会基础。
物联网的概念正大行其道,也使人们看到了社会未来的发展趋势,然而物联网大部分却停留在概念阶段,真正规模应用还有待时日。家庭区域相对狭小、需求比较明确,最有可能优先实现物联网的应用。它不只是现代家庭现实的需要(照看老人、孩童),更是人们日益增强的家庭安全
41家庭物联网应用领域
寒冷的冬季,供暖系统使北方城市家庭充满温暖,而当白天大部分人离家上班的时候,空空的房间仍温暖如春。我们需要一个智能化的供暖控制系统。在生产安全领域,在食品卫生领域,在工程控制领域,在城市管理领域,在人们日常生活的各个方面,甚至在人们的娱乐活动中,都需要建立随时能与物体沟通的智能系统。通过装置在各类物体上的电子标签(RFID),传感器、二维码等经过接口与无线网络相连,从而给物体赋予智能,可以实现人与物体的沟通和对话也可以实现物体与物体相互间的沟通和对话。在电度表上装上传感器,供电部门随时都可知道用户的用电情况,实现用电检查、电能质量监测、负荷管理、线损管理、需求侧管理等高效一体化管理,一年来降低电损。在电梯装上传感器,当电梯发生故障时,无需乘客报警、电梯管理部门会借助网络在第一时间得信息,以最快的速度去现场处理故障。
42发展历程
1999年,物联网的概念就已被提出,10年间,世界各国都在加紧研究。物联网的发展共分为四个阶段:第一个阶段是大型机、主机的联网,第二个阶段是台式机、笔记本与互联网相联,第三个阶段是手机等一些移动设备的互联,第四阶段是嵌入式互联网兴起阶段,更多与人们日常生活紧密相关的应用设备,包括洗衣机、冰箱、电视、微波炉等都将加入互联互通的行列,最终形成全球统一的“物联网”。
对于互联网来说,20世纪80年代是黄金时代,这段时间出了一个知名的人物——鲍勃•卡恩(BobKahn),他被人们称为互联网之父(被赋予同样称呼的人还有好几个)。在为互联网做出卓越贡献的同时,他也非常有远见的为另一个始于上世纪80年代的项目——分布式传感网(DistributedSensorNet,简称DSN)——做了奠基。在那个年代,传感器远比我手上的这个大得多,要用一辆卡车来拉。这么大的传感器作为一个个节点组织在一起,通过微波彼此相连,就组成了传感网。
庞大的传感器在体积方面跟不上人们对其功用上的期望,于是研究者们就开始思考能不能把它做得小一点、再小一点。于是,在上世纪90年代,“智能微尘”(SmartDust)这个很有意思的概念出现了,提出者是KrisPister,他是加州大学伯克利分校的教授。这一概念认为可以将计算和通讯集成在约1~2平方毫米的超微型传感器中,用以对周围环境的参数进行探测。其核心的成分是微电机系统(Micro-Electro-MechanicalSystem,简称MEMS;这个概念在当时引起非常大的轰动),该系统中可以集成很多和机械有关的传感器。
当时KrisPister这批人有一个幻想——在蒲公英上面悬挂一个传感芯片,蒲公英飞到哪里就探测哪里的信号,再把信号传递回来。虽然只是一个假想,但当时真有科学家信心百倍地投入其中,并且还把所需的数据算出来了。比如有空气动力学专家计算出了芯片应有的重量等等。在2001年,加州大学伯克利分校的实验室真做出了这种理想中的芯片雏形,比米粒还小,可谓“细如发丝,薄如蝉翼”。他们送给了我一个,当时我还精心包装了一下。可惜最近找不到了,特别遗憾。倘若芯片里面还有电留存的话,说不定我就能通过网络定位到它的“安身之所”了。
在这一时期,有三所高校和研究机构在传感器领域处于领军地位,一是加州大学伯克利分校(以KrisPister为代表,他们提出了“智能微尘”理论),另外两个是加州大学洛杉矶分校(他们提出了“微无线技术”)和施乐帕克研究中心(XeroxPARC)。施乐帕克研究中心的团队主要由我带领,我们做的是传感信息处理和“智能物质”(SmartMatter),希望能把计算、微电机系统放到物理世界中,与“智能微尘”也有非常紧密的联系。
自本世纪初以来,对于传感的研究越来越受到人们的重视,有很多学校和大公司的研发机构开始进行了类似的研究,并有许多新兴公司借此东风异军突起。将传感器连接成“网”或“系统”,就成了传感网。除了传感网以外,类似的概念也相继提出,比如“CyberPhysicalSystem”和“InternetofThings”(简称IOT)。相较而言,IOT的概念在提出的初期更接近于日常生活,比如常见的RFID(RadioFrequencyIdentification,射频识别)技术就是它的一部分。
关于传感网和物联网的历史,若从大的传感器开始算起,传感网诞生至今应有30年了;而若从微传感网(MicroWirelessSensorNetwork)来说,应该仅有15至20年:微传感网始于上世纪90年代,那个时期的人们刚刚提出“微电机系统”的概念,试图把传感器和计算机处理和通讯全部都集成在一个芯片上,即“智慧微尘”。
其实传感器的历史,归结起来就八个字——从大到小,以点到面。这八个字看似简单,但做起来却是困难重重——要想让传感器真正“飞入寻常世界中”,它必需在体积、造价、能耗等方面进行“瘦身”,这样它才真正能够进入到物理世界。
然而,造型的缩小并不是传感进入生活的唯一条件,还需要互联网技术的配合以实现从点到面的网际联系。就IP地址而言,物联网应采用IPv6(IPv4必然不够),它有128位两进制的IP网址数,这相当于给世界上的每个沙粒都赋予了一个 IP地址。唯有当所有的物体都有一个属于自己的IP的时候,物联网才能真正实现。总而言之,物联网的实现需要这两方面的相辅相成:一是利用微处理技术(micro-fabrication),提高集成度;其二是运用IP技术,以提供足够丰富的网址。
43面临的问题
国内智能家居市场存在很多问题。1、进入门槛较高,一般一次性投入要1、2万元,这就大大限制了中等收入以下人群的购买需求。2、功能华而不实,很多都是遥控个灯光、音响,需求跟投入不成比例。3、生搬硬套,将原来很多工业上使用的东西直接照搬到家庭里,缺少人性化,不能完全适合家居生活需要。4、很多智能家居企业缺少核心技术,东拼西凑,组成个系统就推广,导致成本增高、企业竞争力下降。
RFID超高频技术在我国的应用尚处于起步阶段,一些项目的应用只是试点,还没有得到广泛应用,也没有在供链上应用。比如,只在某一个仓库里应用,或只在生产线上应用。应该说,这些试点项目全
都属于闭环状态的应用,在供应链上串起来应用的案例国内还没有出现。
物联网发展潜力无限,但物联网的实现并不仅仅是技术方面的问题,建设物联网过程将涉及到许多规划、管理、协调、合作等方面的问题,还涉及标准和安全保护等方面的问题,这就需要有一系列相应的配套政策和规范的制订和完善。
首先是技术标准问题。标准是一种交流规则,关系着物联网物品间的沟通。各国存在不同的标准,因此需要加强国家之间的合作,以寻求一个能被普遍接受的标准。
其次是安全的问题。物联网中的物品间联系更紧密,物品和人也连接起来,使得信息采集和交换设备大量使用,数据泄密也成为了越来越严重的问题。如何实现大量的数据及用户隐私的保护,成为待解决的问题。
第三,协议问题。物联网是互联网的延伸,在物联网核心层面是基于TCP/IP,但在接入层面,协议类别五花八门,CPRS、短信、传感器、TD-SCDMA、有线等多种通道,物联网需要一个统一的协议基础。
第四,终端问题。物联网终端除具有本身功能外还拥有传感器和网络接入等功能,且不同行业需求各异议,如何满足终端产品的多样化需求,对运营商来说的一大挑战。
第五,地址问题。每个物品都需要在物联网中被寻址,就需要一个地址。物联网需要更多的IP地址,IPv4资源即将耗尽,那就需要IPv6来支撑。IPv4 向IPv6过渡是一个漫长的过程,因此物联网一旦使用IPv6地址,就必然会存在与IPv4兼容性问题。
第六,费用问题。目前物联网所需的芯片等组件的费用较高,若把所有物品都植入识别芯片花费自然不少,如何有效解决这一问题仍需考虑。
第七,规模化问题。规模化是运营商业绩的重要指标,终端的价格、产品多样性、行业应用的深度和广度都会地用户规模产生影响,如何实现规模化是具有待商讨的问题。
第八,商业模式问题。物联网在商业应用方面的业务模式还不是很明朗,商业模式问题值得更进一步探讨。
第九,产业链问题。物联网所需要的自动控制、信息传感、射频识别等上游技术和产业已成熟或基本成熟,而下游的应用也单体形式存在。物联网的发展需要产业链的共同努力,实现上下游产业的联动,跨专业的联动,从而带动整个产业链,共同推动物联网发展。
要建立一个有效的物联网,有两大难点必须解决:一是规模性,只有具备了规模,才能使物品的智能发挥作用;二是流动性,物品通常都不是静止的,而是处于运动的状态,必须保持物品在运动状态,甚至高速运动状态下都能随时实现对物品的监控和追踪。
实现物联网,首先必须在所有物品中嵌入电子标签等存储体,并需安装众多读取设备和庞大的信息处理系统,这必然导致大量的资金投入。因此,在成本尚未降至能普及的前提下,物联网的发展将受到限制。已有的事实均证明,在现阶段,物联网的技术效率并没有转化为规模的经济效率,目前的所谓物联网应用也没有一个在商业上获得了较大成功。例如,智能抄表系统能将电表的读数通过商用无线系统(如GSM短消息)传递到电力系统的数据中心,但电力系统仍没有规模使用这类技术,原因在于这类技术没有经济效率。
物联网的关键在于RFID、传感器、嵌入式软件及传输数据计算等领域,包括“云计算”、无线网络的扩容和优化等均是物联网普及需解决的问题。只有通过“云计算”技术的运用,才能使数以亿计的种类物品的实时动态管理变得可能。从目前国内产业发展水平而言,传感器产业人水平较低,高端产品为国外厂商垄断。云从 科技 7月20日成功过会,在与旷世 科技 、商汤 科技 和依图 科技 "AI四小龙"的上市比拼中率先上岸,公司也因此成为科创AI第一股。2018-2020年云从 科技 累计亏损2684亿元,此次在科创板公司募集资金375亿元,科创板的上市也意味着公司可以缓解常年亏损带来的资金压力。
AI公司赚钱太难了。相关报告显示,全球近90%的AI公司处于亏损状态,10%的赚钱企业基本是技术提供商,中国AI产业链中90%以上的企业也同样处于亏损阶段。AI四小龙无一例外全部亏损,而且一个比一个能亏,比如依图 科技 2017-2020H1累计亏损7268亿元;旷世 科技 2017-2020Q3期间累计亏损1306亿元。商汤 科技 IPO不太顺利,有消息称公司将于8月份向港交所提交申请。虽然目前不清楚商汤 科技 亏损多少,但公司与云从 科技 一样,也是亏损的状态。
为什么AI公司赚钱这么难?
云从 科技 主营业务是为客户提供高效人机协同 *** 作系统和行业解决方案,前者是凭借自主研发的人工智能核心技术打造了人机协同 *** 作系统,通过对业务数据、硬件设备和软件应用的全面连接,把握人工智能生态核心入口,为客户提供信息化、数字化、智能化的人工智能服务;后者是基于人机协同 *** 作系统,赋能智慧金融、智慧出行等应用场景,为更广泛的客户群体提供以人工智能技术为核心的行业解决方案:
报告期内公司向客户提供基础 *** 作系统、基于人机协同 *** 作系统的应用产品和核心组件以及技术服务,其中基础 *** 作系统是可以直接销售给客户的,一般交付给具有研发能力的企业和第三方软件厂商,由客户二次开发后投入使用。公司提供的 *** 作系统有智能云平台、视图汇聚分析平台、融智云平台和集成生物识别系统,基于不同的功能,面向物联网、政府、公安等城市治理和金融、商业等不同应用场景:
值得注意的是如果客户前期没有购买云从 科技 *** 作系统,则公司向客户销售 *** 作系统和应用产品,保证相关应用产品有效运行。核心组件是基础 *** 作系统内可以独立交付的功能模块,通常是封装了核心AI能力的软件包,主要交付给研发实力强、对软件管控要求较高的客户,由客户集成到其自由系统中使用,基本不涉及进行定制化开发。技术服务主要是人机协同 *** 作系统在软件产品销售以外的服务,包括公有云服务、风控服务和智能化运维服务。
成立至今云从 科技 人机协同 *** 作系统及应用产品相继经历了初步推进人机协同 *** 作系统内核沉淀的V10、综合多类业务场景的基础 *** 作系统V20和升级人机协同 *** 作系统V30三个阶段,实现了智慧金融、智慧治理、智慧出行和智慧商业四个重点领域的基础 *** 作系统的整合。公司的V40版本则是升级了智慧治理领域的融智云平台和智慧金融领域的集成生物识别系统,通过AI技术优化系统的运行效率和用户体验:
在系统层上云从 科技 开发了面向不同领域的基础 *** 作系统,通过系统和组件的方式将AI技术赋能应用场景。2014年以来旷视 科技 便开始了Brain++这一AI生产力平台的研发,覆盖从数据生成、清洗、预处理、标注和存储到算法架构设计、实验环节设计、训练环境搭建,再到训练、加速、模型评估和产生模型以及模型分发、部署应用全流程。Brain++集成了包括深度学习框架MegEngine(天元)、深度学习云计算平台MegCompute和数据管理平台MegData,将算力、算法和数据能力融为一体,作为AI基础设施,实现从算法生产到应用的全流程化和规模化供给:
旷视 科技 的Brain++平台相比云从 科技 的 *** 作系统+组件的模式,不同之处在于将算力、算法和数据进行融合,实现了AI的全流程。比如公司的Brain++商业版覆盖了数据管理、模型开发和算力调度等算法生产全流程,还可为客户提供集群搭建和部署在内的硬件交付,让客户不必为寻找AI硬件供应商和软硬件适配等问题烦恼,提升了AI的效率。Brain++平台和算法构成了旷视 科技 的核心AI能力:
业务模式上,云从 科技 的基础 *** 作系统、组件和应用产品可以单独销售,但旷视 科技 的Brain++平台是以解决方案的形式对外销售的,这构成了俩公司业务上的差异。
2018-2020年云从 科技 实现营收484亿元、807亿元和755亿元,这其中主营业务收入为483亿元、780亿元和751亿元,2020年主营业务下降主要系疫情影响,这与其商业模式有关。报告期内公司其他业务主要为向少量客户提供外购硬件和技术开发服务,2019年其他业务收入一度达到027亿元,但占比仍较小。
主营业务中人机协同 *** 作系统营收为031亿元、183亿元和237亿元,营收占比为62%、227%、313%;人工智能解决方案营收为452亿元、597亿元和515亿元,营收占比为936%、740%和682%:
旷视 科技 是一家聚焦物联网场景,以物联网为AI技术落地载体,通过构建完整AIoT产品体系,面向消费物联网、城市物联网、供应链物联网三大核心场景,提供经验验证的解决方案的AI公司。公司业务分为消费物联网解决方案、城市物联网解决方案和供应链物联网解决方案三大类。2017-2020Q3公司营收为304亿元、854亿元、1260亿元和716亿元,其中60%以上的营收来自城市物联网解决方案业务:
值得注意的是,云从 科技 营收中第三方软硬件和智能AIoT设备营收占比虽然从2018年的812%下降至2020年的508%,但仍占据半壁江山。号称行业领先的AI公司,营收一半竟然来自硬件产品,这就引出了一个问题:AI公司靠什么赚钱?
毛利率来看,报告期内云从 科技 主营业务毛利率虽然由215%提升至432%,但仍大幅低于依图 科技 和旷视 科技 的毛利率,依图 科技 主营业务毛利率由2017年的574%提升至2020H1的71%,是这几家公司中最高的:
细分到具体产品或服务,可以看出云从 科技 人机协同 *** 作系统的毛利率在75%以上,处于较高水平。人机协同 *** 作系统中软件授权业务的毛利率超过80%,主要是绝大部分软件授权业务涉及安装调试或定制开发,产生了相应的费用。报告期内公司技术服务毛利率由9945%下降至40%,因为金融风控业务涉及对外采购数据服务,2020年新增的数据中心智能化运维服务需要委托第三方提供服务,降低了毛利率水平。
云从 科技 营收占比最大的人工智能解决方案业务毛利率为1776%、2343%和2819%,主要是该类业务根据客户需求,需外购部分配套软硬件产品或服务,外购材料成本较高,挤压了毛利率空间。公司人工智能解决方案毛利率相比可比企业也明显偏低,比如依图 科技 软件、软硬件组合在报告期内的毛利率分别为641%、819%、875%、868%和113%、328%、543%和696%。
云天励飞和云知声解决方案业务毛利率水平相比依图 科技 和旷视 科技 偏低,与云从 科技 相当。比如云天励飞数字城市云隐管理业务和人居生活智慧化升级业务毛利率分别由4227%、6316%下降至3823%和4443%,主要系解决方案中需要采购硬件并有一定比例的安装服务成本,尤其是硬件设备比例上升会拖累相关业务的毛利率水平:
旷视 科技 业务毛利率水平来看,消费类物联网解决方案业务毛利率超过80%,但其营收占比由2017年的459%下降至2020Q3的181%,营收占比最大的城市物联网毛利率下降至30%以下,因此拖累了公司的毛利率水平:
旷视 科技 在招股书中提到,消费物联网解决方案是公司传统核心优势业务,主要利用人脸识别技术提供云端SaaS类及移动终端类解决方案,成本以软件为主,毛利率水平最高。城市物联网解决方案业务主要为智慧城市及智慧建筑管理,这一业务随着行业经验积累、项目设计与交付能力不断提升,按理公司具有提升毛利率空间的能力。但旷视 科技 提到,因为项目成本中硬件占比提升,导致毛利率有所下降:
结合云从 科技 、云天励飞和旷视 科技 等业务模式,可以看出:如果单纯靠出货 *** 作系统等业务,公司可以保持一个很高的毛利率。未来随着业务不断成熟,成本和费用的下降,公司具有盈利的可能。但目前来看,旷视 科技 、依图 科技 等为代表的AI公司还是以解决方案业务为主,这就涉及到一些硬件的采购和安装,相应的导致毛利率的下降。
AI四小龙无一例外全部亏损,而且一个比一个能亏。云从 科技 报告期内累计亏损2684亿元,看起来不少,但在旷视 科技 和依图 科技 面前还是弱爆了。
依图 科技 2017-2020H1净利润分别亏损1166亿元、1161亿元、3642亿元和1299亿元,累计亏损7268亿元。旷世 科技 2017-2020Q3期间分别亏损775亿元、280亿元、6639亿元和2846亿元,累计亏损1306亿元。商汤 科技 IPO不太顺利,有消息称公司将于8月份向港交所提交申请。虽然目前不清楚商汤 科技 亏损多少,但公司与云从 科技 一样,也是亏损的状态。
寒武纪主营业务是AI芯片的研发、设计与销售,主营业务与云从 科技 等明显不同,但2017-2020年公司仍然累计亏损超过20亿元。2020年寒武纪亏损大幅减少,但扭亏为盈还是遥遥无期:
行业龙头亏损严重,中小AI公司同样亏的不少。比如提供数字城市运营管理和人居生活智慧化升级应用场景解决方案的云天励飞2017-2020Q3期间净利润累计亏损1607亿元,2020年前三季度公司营收为267亿元,报告期内营收累计仅为68亿元,赚的还没有亏的多。
为什么AI公司赚钱这么难?
先说说这些公司亏损的直接原因。
2018-2020年云从 科技 毛利从105亿元增长至328亿元,毛利率由215%提升至432%,但期间费用由338亿元飙升至1061亿元,直接造成营业利润亏损。
报告期内公司销售费用由129亿元增长至274亿元,销售费用率由2663%提升至3628%,这属于很高的水平了。此外公司研发投入持续加大,由2018年的148亿元增长至578亿元,营收占比由3061%提升至7659%,已经足以让公司亏损了:
报告期内云从 科技 实施股权激励并产生了相应的费用,但这种费用短期对公司利润带来压力,假以时日影响会消除,但销售费用和研发费用的增加是持续性的,毕竟这与公司经营密切相关。比如云从 科技 销售费用中占比最大的是人员薪酬,主要是公司业务扩展,销售人员和平均薪酬增加。
人工智能仍然是一个技术密集型企业,各家公司为了保证持续的竞争力也在投入大量的资金用于研发。目前人工智能相关技术和应用场景的解决方案迭代速度比较快,以云为例产品迭代周期一般为2-6个月,因此人工智能行业的研发是个持续时间长且投入高的过程。比如云从 科技 2020年研发费用率超过75%,公司基于人机协同 *** 作系统在研项目有基础平台、算法工厂、AI融合数据湖、知识计算和人机自然交互等8项之多。
亏损最严重的旷视 科技 也是如此。2017-2020Q3公司期间费用由402亿元增长至1349亿元,规模上超过公司的营收,这其中销售费用率、管理费用率和研发费用率分别由2414%、3345%、6650%提升至416%、5756%和9223%:
另外为了提高研发人员、管理人员等积极性,或者出于营造缺钱的目的,AI公司还会实施股权激励,并为此产生巨大的股份支付费用,侵蚀了公司的盈利空间。比如2019年云从 科技 实施了股权激励,产生了1303亿元的股份支付费用;2019-2020Q3云天励飞为激励核心团队、保证团队稳定性,对核心成员实施股权激励,为此分别支付了208亿元和719亿元的股份支付费用。
目前抛开其他不谈,在研发上的投入和股权激励产生的巨大费用,凭借这两项,已经让大多数AI公司陷入亏损了。
客户变动大、客户集中度较高、单一客户依赖性较高等仍是AI公司面临的共同难题,而这一难题事关公司经营是否可持续,也是这类公司上市中的拦路虎之一。无论是注册制下的科创板、创业板还是审核制下的主板,从发审委到上市委,都盯着这一问题。
今年3月份上交所在云从 科技 第一轮问询中就要求公司就"不同类型产品前五大客户的销售内容、销售收入及变动原因,前五大客户变动较大是否符合行业惯例"等进行问询。
2018年云从 科技 第一大客户分别为北京物联新泊 科技 有限公司,营收占比为3011%;2019-2020年北京汇志凌云数据技术有限责任公司为公司第一大业务,营收占比为3049%和1098%,销售金额变动也非常大。另外江苏趋云信息 科技 有限公司和江西骏马 科技 有限公司成立不久后就成为公司前五大客户,上交所还就合理性、交易价格公允性和是否存在利益输送或其他特殊利益安排等进行问询。
云从 科技 这种情况在其他AI公司中也存在。比如2017-2020Q3旷视 科技 前五大客户相继经历了杭州联汇 科技 有限公司、中国移动、北京易华录信息技术股份有限公司和东华软件股份公司四家公司,销售金额也从2500多万到8500多万不等,而且多个客户经历了一轮游,在下一年度中不见踪影:
从云从 科技 的反馈来看,AI公司面临碎片化问题,不仅仅是场景的碎片化,还有订单的碎片化。以2020年度人机协同 *** 作系统客户分布情况来看,云从 科技 绝大多数客户的订单规模在100万元以下,1000万元以上的订单占比很低。应用场景上,公司产品覆盖了智慧治理、智慧金融智慧出行、智慧商业等多个领域,营收占比最大的人工智能解决方案也呈现出类似的特征:
客户集中度上,云从 科技 前五大客户销售占比从6223%下降至2792%,相反依图 科技 前五大客户销售占比从3512%提升至6202%,而旷视 科技 常年在20%-30%左右徘徊。
客户的飘忽不定说明了人工智能技术在客户端的复用性很低,订单的碎片化说明了人工智能技术商业化水平还处于较低的水平,难以实现规模化应用。AI公司要想寻求发展就要不断开发新用户、不断延伸新的应用场景,这势必增加了公司的额外开支。前文已经提到,云从 科技 、旷视 科技 等销售费用率很高,尤其是职工薪酬占主要比例,主要是为了扩大业务区域、开拓客户而招兵买马,相应的费用不断增长。
人工智能产业链分为基础层、技术层和应用层三大环节,其中目前以旷视 科技 、云天励飞等为代表的企业多为技术层公司,主要通过开发相关算法赋能智慧城市、智慧金融等应用场景。目前中国的AI产业相比美国,差距在于第一是基础层实力偏弱,尤其是具有全球竞争力的芯片、传感器等领域的公司太少,而且华为等部分企业因为实体清单影响,经营遭遇困难:
云从 科技 、旷视 科技 等相继布局计算机视觉、语音识别和自然语言处理等技术层,但更多的企业处于应用层,参照互联网公司,应用层的竞争会更加激烈,技术实力不佳、综合能力不足的公司会逐渐掉队。另外值得注意的是与美国的谷歌、亚马逊和微软等类似,华为、腾讯和阿里巴巴等巨头的加入让人工智能行业竞争更加激烈。华为、腾讯等公司拥有打通基础层、技术层和应用层的能力,而且在技术、研发、客户、市场等方面拥有云从 科技 等难以撼动的优势,因此势必给这些公司带来巨大压力。
从目前产业发展现状和人工智能技术发展曲线来看,其已到了从技术转向大规模应用的关键节点,目前如何规模化落地成为行业痛点。不过对云从 科技 、旷视 科技 等这些资本一路输血充大的公司来说,现在紧迫的事情是如何通过上市在补血的同时还让曾经的投资者退出,毕竟这么多年下来它们等不及了。
万一所投公司倒闭了,一切都打水漂了。
物联网的核心和基础是互联网。
物联网是互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络。物联网将现实世界数字化,应用范围十分广泛。
在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可以查出它们的具体位置。
物联网拉近分散的信息,统整物与物的数字信息,物联网的应用领域主要包括以下方面:运输和物流领域、工业制造、健康医疗领域范围、智能环境(家庭、办公、工厂)领域、个人和社会领域等,具有十分广阔的市场和应用前景。
扩展资料:
事实上,物联网与智能制造引领着新的制造业革命,各国都已在这个领域开始谋篇布局。从这次博览会的现场,也可以感受到各国的激烈竞争。
此次世界物联网博览会参加的企业规模空前,共吸引了来自中、美、英、法、德、日、意等21个国家和地区的500余家企业前来参展,带来令人惊叹的前沿产品。
正如与会嘉宾所言,全球每天约有550万新设备加入物联网,预计到2021年,全球联网设备将达到280亿台,其中160亿台与物联网相关。一个崭新的物联网时代正扑面而来。
在这个前沿领域,中国并未缺席,而是抓住机会实现弯道超车。以这次博览会的举办地江苏无锡为例,无锡现在有物联网企业超过2000家,截止到2016年底,物联网产业的产值超过2000亿,并继续保持着良好的增长态势。
物联网和智能制造是“中国制造2025”的主攻方向,是实现新兴产业培育发展与传统产业改造升级有机结合的最佳突破口。在这个新兴领域,中国不仅有规划、有蓝图,更有基础、有举措,一定不会与这次机遇失之交臂。
参考资料:
参考资料:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)