新的mn316物联网模块at指令怎么 *** 作

新的mn316物联网模块at指令怎么 *** 作,第1张

对于大多数物联网从业者来说,有两样东西是避免不了的,一个是单片机,一个是移动通信模块。现在主流的通信模块都以4G模组和NB-IOT模组为主(由于运营商正在对2G进行退网,在新产品上继续使用2G模组已经是个不明智的决定了)。无论是曾经的2G模组还是现在主流的4G和NB-IOT模组,都采用了AT指令的方式与外部控制器进行通信,AT指令因此成为物联网从业者必须要掌握的知识。
4G模组举例
AT是Attention的缩写,最早是贺氏公司(Hayes)为了控制调制解调器而发明的协议。后来随着网络带宽的升级,速度很低的拨号调制解调器基本退出一般使用市场,但是 AT 命令保留了下来,并且逐渐被标准化。现在的移动通信模组(2G,4G,NB-IOT)皆采用AT指令作为其控制协议,AT 指令已经成为通信模组产品开发中的实际标准。
某4G模块应用示意图
AT指令只是AT客户端(如MCU)和AT服务器(如移动通信模组)之间的软件接口,硬件上基本都采用串口作为接口。有一点需要注意,很多模块的串口电平采用的是18V,而大多数MCU的IO口电平是33V或5V,所以在硬件连接上需要依据具体情况考虑进行电平转换。
AT指令工作示意图
AT指令的大部分使用场景是这样:MCU主动发送AT指令给模组,然后等待模组返回数据,MCU再根据返回的数据做对应 *** 作。每个AT指令都有一个超时时间,如果MCU发送出AT指令后在超时时间内没有收到返回的数据则需要重试。AT指令中还有一种数据被成为URC数据,URC的全称是Unsolicited Result Code,翻译成中文就是“不请自来的结果码”。顾名思义,它不是模块对MCU所发送AT指令的返回,而是模块主动上报的数据。比如模块收到TCP数据包,或者模块的网络状态发生改变,都会通过URC数据主动告知MCU。
下面介绍下AT指令的格式。AT指令是基于字符串的通信协议,一般 AT 命令由三个部分组成,分别是:前缀、主体和结束符。其中前缀由字符“AT”构成;主体由命令、参数和可能用到的数据组成,结束符一般为 <CR><LF> (即回车换行,对应于ASCII码中的“\r\n”)。AT指令可以分为以下几种(<x>代表命令):
上表中省略了结束符,在实际使用中,将<x>替换为要用的命令,并且整个命令需要以<CR><LF>结尾。如何知道模块都支持哪些AT指令呢?关于具体的AT指令,其实不用刻意去记忆,因为每个模块都会有配套的AT指令集手册,要用的时候再去查询手册就行了。
AT指令应用举例(以下指令皆省略了回车换行):
MCU发送:AT
模组返回:OK
命令说明:可以根据是否有OK返回判断模块是否可用。
MCU发送:AT+CGSN
模组返回:<IMEI>
 OK
命令说明:用于查询模组的IMEI。
MCU发送:AT+CGACT=<state>,<cid>
模组返回:OK
命令说明:用于设置模块PDP上下文激活状态。
MCU发送:AT+CGACT?
模组返回:+CGACT: <cid>,<state>
 OK
命令说明:用于查询模块PDP上下文激活状态。

UART串口WiFi模块是近几年广泛应用于物联网领域的无线通信技术,因为WiFi的普遍性以及和手机的关联性等优点,让UART串口WiFi在智能单品领域异常火热,从智能家电到插座、温控器等等。而随着BLE蓝牙模块在智能家居的成功应用,越来越多的客户对UART串口WiFi模块提出了对小尺寸、低功耗的需求。

为满足物联网智能家居领域内越来越多客户提出的对UART串口WiFi模块小尺寸、低功耗,但功能强大的模组需求,SKYLAB WiFi软件、硬件研发团队研发推出了契合物联网应用需求的高集成度、小尺寸、超低功耗的UART串口WiFi模块——WG219。

WG219是一款基于ESP8266芯片的低功耗小(深度睡眠模式电流18uA)尺寸UART-WiFi透传模块,符合80211b/g/n无线模块标准,专为移动设备和物联网应用设计,可将用户的物理设备连接到WiFi无线网络上,进行互联网或局域网通信,实现联网功能。另外WG219仅需要通过出串口使用AT指令控制,就能满足大部分的网络功能需求。

WG219针对企业、智能电网、家庭自动化和控制客户端应用及特定情况下少数据发送和接收控制进行了优化。WG219 WiFi模块还支持拥有SW on-chip完整的应用程序的超低功率设备的快速程序开发应用。这使WG219在高集成、低功耗的自动化和传感器解决方案中是一个很好的选择。

基于高集成度WiFi模块WG219的智能插座方案

智能插座中内置UART WiFi模块(WG219),用户手机下载相关APP,通过路由器连接WiFi与智能插座中的WiFi模块建立连接,获得智能插座的控制权限,也可以通过云端来实现控制。

SKYLAB UART串口WiFi模块整体解决方案

SKYLAB不仅可以提供WiFi模块及其本身的软件支持,随着物联网的发展,云服务成了智能产品必不可少的一部分,云服务、云计算越来越流行。SKYLAB在这方面也积极部署,建立与云服务厂商的合作,推出系统解决方案,为客户提供包括室内控制中UART串口WiFi模块及整体WiFi应用方案等服务。

WiFi技术:

WiFi方案的优势是技术成熟,单独的产品就可以接入公网,成本也是相对较低。

缺点则是WiFi设备一般功耗较大,在物联网领域中,供电是一个问题;

WiFi接入数量相对有限,一个家庭路由器一般只能接入几十个设备;

当然,WiFi方案在物联网初级阶段有较大优势,单独的WiFi模块依托路由器即可入网,优势明显,虽然接入数量不多,但是在物联网、智能家居未大规模普及的情况下,也可以满足大多数需求。

所以基于IoT UART串口WiFi模块WG219/WG229/WG231/LCS6260的WiFi方案更适用于对功耗要求不明显,不会大量部署的物联网产品,例如:智能电饭煲,智能空调、冰箱、洗衣机等传统家电设备接入物联网。

蓝牙技术:

蓝牙方案的主要优势在于蓝牙模块的超低功耗,而且通过app打开蓝牙与手机的交互比较简单。

SKB369/SKB501

目前随着蓝牙50模块SKB501(网页链接)、以及更多蓝牙50产品的上市,蓝牙技术的数据传输速度和覆盖范围等得到了巨大的提升,更加适用于物联网的要求。

所以,蓝牙方案适用于对功耗有要求,和手机可以直接交互的物联网产品,例如:智能门锁,智能秤,智能电动牙刷等,也适用于大规模蓝牙mesh灯控、蓝牙传感器网络的部署。

UWB技术:

超宽带技术是近年来新兴一项全新的、与传统通信技术有极大差异的通信无线新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或微秒级以下的极窄脉冲来传输数据,从而具有31~106GHz量级的带宽。目前,包括美国,日本,加拿大等在内的国家都在研究这项技术,在无线室内定位领域具有良好的前景。

UWB技术是一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。正是这些优点,使它在室内定位领域得到了较为精确的结果。

超宽带室内定位技术常采用TDOA演示测距定位算法,就是通过信号到达的时间差,通过双曲线交叉来定位的超宽带系统包括产生、发射、接收、处理极窄脉冲信号的无线电系统。而超宽带室内定位系统则包括UWB接收器、UWB参考标签和主动UWB标签。定位过程中由UWB接收器接收标签发射的UWB信号,通过过滤电磁波传输过程中夹杂的各种噪声干扰,得到含有效信息的信号,再通过中央处理单元进行测距定位计算分析。

超宽带可用于室内精确定位,例如战场士兵的位置发现、机器人运动跟踪等。超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗干扰效果好、安全性高、系统复杂度低、能提供精确定位精度等优点。因此,超宽带技术可以应用于室内静止或者移动物体以及人的定位跟踪与导航,且能提供十分精确的定位精度。根据不同公司使用的技术手段或算法不同,精度可保持在01 m~05 m。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13431068.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-04
下一篇 2023-08-04

发表评论

登录后才能评论

评论列表(0条)

保存