工业物联网有哪些价值

工业物联网有哪些价值,第1张

物联网与工业物联网、工业40的概念既有交集也有差异。物联网强调的是将生活和生产中一切硬件设备的连接;工业物联网是指在工业环境下,生产设备和产品的连接;工业40则涵盖整个制造生态系统。

随着工业化与信息化的深度融合,企业内部及企业间生产控制系统和生产管理系统互联互通的需求渐增,通过接入网络进而达到提高产品质量和运营效率的需求更为强烈,工业物联网应运而生。

工业物联网将生产过程的每一个环节、设备变成数据终端,全方位采集底层基础数据,并进行更深层面的数据分析与挖掘,从而提高效率、优化运营。

与物联网在消费行业的应用不同,物联网在工业领域的基础已经存在了几十年。如过程控制和自动化系统、工业化以太网连接和无线局域网(WALN)等系统已经在工厂运行多年,并接连可编程逻辑控制器(PLC)、无线传感器和射频识别技术标签(RFID)。但是在传统工业自动化环境下,一切都只是发生在工厂自己的系统里,从来没有与外部世界连接。

工业物联网相较于传统工业自动化有以下四个特点:

数据收集范围:工业物联网利用RFID、传感器、二维码等手段随时获取产品从生产到销售到最终用户使用各个阶段的信息数据,而传统工业自动化的数据采集往往局限于生产质检阶段。

互联传输:工业物联网利用专用网络与互联网相结合的方式,实时准确地传递物体信息,对网络依赖性更高,更强调数据交互。

智能处理:工业物联网综合利用云计算、云存储、模糊识别、神经网络等智能计算技术,对海量数据和信息进行分析和处理,并结合大数据技术,深入挖掘数据价值。

自组织与自维护:工业物联网的每个节点为整个系统提供自己处理获得的信息或决策数据,当某个节点失效或数据发生变化时,整个系统会自动根据逻辑关系做出相应调整。

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

1、工业大数据的概念

11 大数据概念

大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储 和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。

12 工业大数据概念

工业大数据是大数据的一种类型,是工业领域智能化过程中产生的大数据,通过对数量巨大、来源分散、格式多样的工业系统的数据进行采集、存储和关联分析,从中发现产品、服务和商业的新知识、新价值、新能力。

13 大数据和工业大数据主要区别

1、下降本钱


办理和保护迥然不同的工业物联网设备和网络,本钱昂扬、耗时且杂乱。工业物联网渠道将整个办理流程集中到一起,可以大幅度地下降企业的担负和本钱。另外,跟着越来越多的安排寻求工业物联网供应商来办理其网络,最好的工业物联网渠道使得供应商可以供给按需付费的定价形式。


2、改善运营


工业物联网解决方案可以供给设备功用和人员的实时信息,以协助简化和改善业务流程和工作流程。经过捕获物联网数据并将其与其他内部、外部来历的数据进行整合,工业物联网渠道可促进比如预测性保护以及根据跟踪的供应链可见性等范畴的运营改善。


3、进步生产功率


渠道为布置新的工业物联网应用软件打好了根底。使用这些软件来进行新产品的规划、研制与生产,将有助于推进企业创新和进步生产功率。


4、物联网数据货币化


创新型公司现已开始使用他们从物联网数据获得的洞察力来开发新的产品和服务。在产品的整个生命周期中,售后与服务比原始收购更加有利可图。工业物联网渠道可以在产品生产及使用的每个阶段捕获数据并进行剖析。这样就可以创建新的数据驱动型服务以及开发全新的数据驱动型产品。


5、进步物联网安全


众所周知,物联网设备缺少企业级的安全性。工业物联网传感器等设备除了执行特定的通知任务之外,简直没有什么计算能力,也无法供给多层安全性。工业物联网渠道可以供给一切的身份办理功用,例如安全认证与授权,以保证物联网端点不会遭到网络进犯。


关于工业物联网平台的五大价值,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

工业物联网应用

工业物联网的主要目标是为制造业提供智能解决方案。IIoT
为制造商提供了一系列好处,包括创新、降低维护成本、提高效率和减少非生产期。物联网设备可以显着帮助公司改善运营。这项技术有许多应用,并且在不断发展。

工业物联网是一个连接对象和计算设备的生态系统。一切都可以连接到网络以交换收集的数据。将多个设备连接到 IP
网络并设置常规数据分析非常容易。这使得实时数据可以轻松地与参与工业流程的其他用户共享。它还可以帮助制造商降低成本并提高产品质量。制造商可以从 IIoT
技术带来的好处中受益匪浅。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13437773.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-06
下一篇 2023-08-06

发表评论

登录后才能评论

评论列表(0条)

保存