工业物联网平台的基本功能:
具备:监控大屏、设备地图、系统统计、设备监控、实时数据及曲线、Web组态、故障报警管理、数据报表、远程控制、视频监控、角色管理、人员管理、设备管理、空间管理。
1 数据远程监控: 可以通过网页或者手机APP实现设备数据监控,第一时间了解设备运行状态、修改参数等;
2 设备报警推送: 可以通过短信报警、微信报警、APP报警推送等方式,推送设备故障状信息态,及时掌握设备运行状态;
3 云组态: 通过电脑web网页、手机网页和手机APP直接查看设备的组态画面或数据列表;
4 视频监控: 集成视频监控功能,实现数据和视频的同步显示,实时监控工业现场画面;
5 数据采集存储与分析: 通过对底层设备采集的数据进行合理分类并进行数据存储的优化,实现海量数据的快速检索,同时提供面向企业经营的决策分析,为设备的有效利用提供支撑。
6 用户项目权限管理: 管理者可根据实际应用创建账号,前台可查看的设备组态,后台可对所有的设备、数据、用户进行管理。
工业物联网平台将提供不同的功能组合,包括工业物联网端点管理与连接性,物联网数据的捕获、摄取与处理,数据的可视化与分析,以及将物联网数据整合到业务流程和工作流程中。
物联网起源于传媒领域,是信息科技产业的第三次革命。物联网是指通过信息传感设备,按约定的协议,将任何物体与网络相连接,物体通过信息传播媒介进行信息交换和通信,以实现智能化识别、定位、跟踪、监管等功能。
在物联网应用中有三项关键,分别是感知层、网络传输层和应用层。
相关介绍
1、物联网即万物相连的互联网,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。
2、在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可以查出它们的具体位置。通过物联网可以用中心计算机对机器、设备、人员进行集中管理、控制,也可以对家庭设备、汽车进行遥控,以及搜索位置、防止物品被盗等,类似自动化 *** 控系统。
同时透过收集这些小事的数据,最后可以聚集成大数据,包含重新设计道路以减少车祸、都市更新、灾害预测与犯罪防治、流行病控制等等社会的重大改变,实现物和物相联。
3、物联网将现实世界数字化,应用范围十分广泛。物联网拉近分散的信息,统整物与物的数字信息,物联网的应用领域主要包括以下方面:运输和物流领域、工业制造、健康医疗领域范围、智能环境(家庭、办公、工厂)领域、个人和社会领域等,具有十分广阔的市场和应用前景。
1、工业物联网设备基于工业环境制造,要求比消费物联网高。
工业物联网的设备位于工业环境中,或许是在工厂车间内,也有可能在高速运行的铁路系统里,或者在酒店餐厅里,或市政照明系统里面,也有可能在电网里面。相比消费级物联网,工业物联网有着更加严格的要求,包括无时无刻的控制,坚如磐石的安全性能,复杂环境下(无论是极热或极冷,多尘,潮湿,嘈杂,不方便)运行的能力,以及无人自动化的 *** 作能力。不像大多数近期设计的消费者级别的设备,现有的很多工业设备已经运行了很长一段时间,通常以几十年衡量。
2、工业物联网系统必须具有可扩展性。
由于工业物联网应用环境更为复杂,使得工业物联网对扩展性的要求较高,比消费者家庭自动化项目复杂得多。工业物联网系统会产生数十亿个数据点,必须考虑将信息从传感器传输到最终目的地的方式 ——通常是工业控制系统,如SCADA(监控和数据采集) 平台。而消费者物联网应用涉及较少的设备和数据点,如何最大限度地减少中央服务器的吞吐量,并不算什么大问题。
3、工业物联网安全要求更高。
根据Hewlett Packard研究,有70%的物联网设备存在安全漏洞。如攻击者获得了客户财产相关的实时视频资料,那么对智能家居进行黑客攻击可能会对个人隐私造成重大影响,但网络入侵的影响是局部的。而工业物联网中就不同,这些系统通常要将传感器连接到关键的基础设施资源,如发电厂和水资源管理设施,那么其潜在的影响要严重得多。因此,工业物联网必须满足更严苛的网络安全要求,才能获得批准使用。
但对于工业物联网而言,要面临诸多难题:难题一:面对这么多不同类型、不同型号的设备不同的生产制造厂、不同的设计
不同的物理接口、不同的协议
难题二:对接任务繁重,谁来完成?不同的设备完全不一样。同一个设备不同的厂家完全不一样。同一个厂家同一种设备不同型号不一样。同一个厂家同一个型号不同批次还有可能不一样。
难题三:设备的数据很零散。就像一堆面粉。把数据取出来就这样保存到云端平台。
平台上就是一堆更大的面粉。
随着5G的商业化逐步落地,越来越多的领域加入了数字化转型之路,利用物联网技术实施智能化升级。特别是题主所列举的工业领域,就是谋求数字化转型的先锋。
特别是2020年新冠疫情爆发以来,由于供应链断裂和防疫管理不善所导致企业停工甚至是破产的例子不在少数。而对那些熬过艰难时刻的企业而言,想要在疫情常态化的背景下重塑核心竞争力,数字化转型成为了不可或缺的手段。
与传统的经营模式相比,实施数字化转型能够给企业带来巨大的价值,包括提高生产效率、减少人力成本、加速产品迭代、优化管理流程、加强制造自动化程度等等,真正起到降本增效的作用。此外,数字化程度的提高,也大大提高了企业在生产经营中各种风险的监测能力,避免造成相关损失。
当然,以上只是物联网对于某一个领域所创造的价值,同理,在面对智慧农业、智慧交通、智能家居等行业时,一样可以利用物联网技术来实现更智能和更便捷的功能,例如气候传感器和温湿度传感器可自行检测分析当前数据是否符合农作物生长需求,并联动灌溉或保温系统进行干预,确保作物最佳生长环境。(了解更多智慧人脸识别解决方案,欢迎咨询汉玛智慧)
不知道大家有没有细心发现,其实现在很多物联网的应用已经深入到我们生活各个部分。比如说共享单车,自助扫码骑行,骑完以后锁车付费走人,这个能很好地解决大家短途出行效率。还有就是应用在汽车上,专业术语叫车联网,现在很多10几万的车都具备远程监控的功能。比如说通过app远程启动车子,通过app查看车子的状态,当前在什么位置,还能根据你的行驶里程和机油寿命提醒你去保养等等。类似的例子还有很多,比如说智能家居产品,小家电产品。有些应用虽然感觉是鸡肋,这些都是他们跑马圈地的结果,先把市场占下来,再慢慢更新迭代产品。但不可否认的事,大家确实能感觉到物联网潜在的巨大价值,生怕自己错过一个亿。
从种种迹象也反映了物联网一定是个发展的趋势。总的来说,其实物联网可以和任何一个行业进行融合,让传统的产品更加智能高效。而我们汉玛智慧也在一直努力研发,争取为大家提供更多更优质的智慧解决方案,让我们的生活更加的便捷,让科技未来更指日可待!
如今,超过250亿台“物体”连接到互联网上,预计到2025年,这个数字将翻一番。工业物联网(IIoT)以一种爆炸式的方式迅速发展。工业物联网(IIoT)设备、标准和通信协议的激增,使得对IIoT的有效管理变得非常具有挑战性。如何定义工业物联网 (IIoT) 平台?
工业物联网平台 是一种工业物联网软件,它使组织能够安全地管理工业物联网生态系统中所有连接的人、系统和对象。
在界定工业物联网平台时,我们应该认识到,物联网已经创造了一个新的整合水平。随着成千上万的工业物联网设备接入网络,企业需要管理比以往更多的端点。然而,这不是一个简单的设备问题,工业物联网实际上是一个由人、系统和对象组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理生态系统的每一个元素。
工业物联网平台有哪些不同类型?
虽然工业物联网平台研发的初衷是对工业物联网的设备和数据进行管理和控制,但为了适应不同的用例,已经开发了许多不同类型的平台。事实上,工业物联网平台很难分类,反而工业物联网平台供应商正在改进其平台产品,以满足客户需求和特定的业务需求。
工业物联网平台将提供不同的功能组合,包括工业物联网的端点管理和连接、物联网数据的采集、接收和处理、数据的可视化和分析,以及将物联网数据集成到业务流程和工作流中。在比较不同类型的平台时,应根据组织的业务需求和特定的IT基础设施,并将其与工业物联网的解决方案相匹配。
工业物联网平台应该具备哪些特点?
因此,最好的工业物联网平台因组织而异,单个平台功能集无法为每个用例提供足够的解决方案。但是,任何一个工业物联网平台都应该具备以下特点:
安全
安全性是工业物联网平台的核心,它不仅可以保护所有物联网端点免受外部网络攻击,还可以处理来自组织内部的潜在恶意活动。
连接性
每一个工业物联网设备都必须快速、安全地进行配置,并对其生命周期的所有阶段进行管理,包括在设备配置、注册、激活、挂起、未挂起、删除和按需重置时对其进行跟踪和授权。
集成
集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备与不同的企业应用、云服务、移动应用和传统系统无缝、安全地连接和共享信息。
识别
工业物联网平台可以支持最广泛的物联网设备。无论在工业物联网架构中的任何地方,都能自动感知物联网设备的存在,建立安全连接,并能快速建立设备凭据,或在需要时自动分配。
分析
物联网设备大大增加了组织中的数据量。分析工业物联网应该是工业物联网平台最强大的功能之一。它可以对工业物联网数据进行适当的可视化和分析,为改进数据驱动的决策提供实际的见解。
管理多个工业物联网传感器很简单,但如今,企业拥有数十万台工业物联网设备来执行遍及组织内部的众多任务。工业物联网设备有多种形状和尺寸,没有通用的工业物联网标准或连接方式。管理一个工业物联网网络意味着能够监控一系列异构的工业物联网设备。
如今,工业物联网(IIoT)平台为工业物联网在几乎所有行业的快速发展提供了解决方案。工业物联网平台能够将设备和企业应用软件完美融合,使数据在互联的人、系统和对象之间无缝、安全地流动。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)