简述Internet,物联网,云端计算之间的区别以及联络

简述Internet,物联网,云端计算之间的区别以及联络,第1张

简述Inter,物联网,云端计算之间的区别以及联络

因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。

云端计算,物联网,人之智慧技术之间的联络, 人工智慧云端计算物联网三者之间的联络

人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。

日日月月科技云端计算和物联网之间的区别与联络是什么?

云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。

如何认识Inter与物联网、云端计算、三网融合之间的关系

物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。

云端计算大资料物联网之间的区别与联络 2250字左右我写论文

随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

基于大资料与物联网,云端计算之间的关系

物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。

因特网与物联网,云端计算,三网融合之间的关系

因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。

论述网格计算、云端计算、按需计算之间的联络与区别

云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。

详细阐述大资料,云端计算和物联网三者之前的区别和联络

1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。

LoRa

LoRa(长 距离)是由Semtech公司开发的一种技术,典型工作频率在美国是915MHz,在欧洲是868MHz,在亚洲是433MHz。LoRa的物理层 (PHY)使用了一种独特形式的带前向纠错(FEC)的调频啁啾扩频技术。这种扩频调制允许多个无线电设备使用相同的频段,只要每台设备采用不同的啁啾和 数据速率就可以了。其典型范围是2km至5km,最长距离可达15km,具体取决于所处的位置和天线特性。

LoRa芯片在整个产业链中处于基础核心地位,重要性不言而喻。值得注意的是,目前美国Semtech公司是LoRa芯片的核心供应商,掌握着LoRa底层技术的核心专利。而Semtech的客户主要有两种,一是获得Semtech LoRa芯片IP授权的半导体公司;二是直接采用Semtech芯片做SIP级芯片的厂商,包括微芯 科技 (Microchip)等。

Wi-Fi

Wi-Fi被广泛用于许多物联网应用案例,最常见的是作为从网关到连接互联网的路由器的链路。然而,它也被用于要求高速和中距离的主要无线链路。

大多数Wi-Fi版本工作在24GHz免许可频段,传输距离长达100米,具体取决于应用环境。流行的80211n速度可达300Mb/s,而更新的、工作在5GHz ISM频段的80211ac,速度甚至可以超过13Gb/s。

一 种被称为HaLow的适合物联网应用的新版Wi-Fi即将推出。这个版本的代号是80211ah,在美国使用902MHz至928MHz的免许可频段, 其它国家使用1GHz以下的类似频段。虽然大多数Wi-Fi设备在理想条件下最大只能达到100米的覆盖范围,但HaLow在使用合适天线的情况下可以远达1km。

80211ah 的调制技术是OFDM,它在1MHz信道中使用24个子载波,在更大带宽的信道中使用52个子载波。它可以是BPSK、QPSK或QAM,因此可以提供宽 范围的数据速率。在大多数情况下100kb/s到数Mb/s的速率足够用了——真正的目标是低功耗。Wi-Fi联盟透露,它将在2018年前完成 80211ah的测试和认证计划。

针对物联网应用的另外一种新的Wi-Fi标准是80211af。它旨在使用从54MHz到698MHz范围内的电视空白频段或未使用的电视频道。这些频道 很适合长距离和非视距传输。调制技术是采用BPSK、QPSK或QAM的OFDM。每个6MHz信道的最大数据速率大约为24Mb/s,不过在更低的 VHF电视频段有望实现更长的距离。
ZigBee

ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802154标准规范的媒体访问层与物理层。主要特色有低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑、低复杂度、快速、可靠、安全。ZigBee是物联网的理想选择之一。

虽然ZigBee一般工作在24GHz ISM频段,但它也可以在902MHz到928MHz和868MHz频段中使用。在24GHz频段中数据速率是250kb/s。它可以用在点到点、星形和网格配置中,支持多达254个节点。与其它技术一样,安全性是通过AES-128加密来保证的。ZigBee的一个主要优势是有预先开发好的软件应用配 置文件供具体应用(包括物联网)使用。最终产品必须得到许可。

ZigBee技术所采用的自组织网是怎么回事?举一个简单的例子就可以说明这个问题,当一队伞兵空降后,每人持有一个ZigBee网络模块终端,降落到地面后,只要他们彼此间在网络模块的通信范围内,通过彼此自动寻找,很快就可以形成一个互联互通的ZigBee网络。而且,由于人员的移动,彼此间的联络还会发生变化。因而,模块还可以通过重新寻找通信对象,确定彼此间的联络,对原有网络进行刷新。这就是自组织网。

NB-IoT

窄带物联网(Narrow Band Internet of Things, NB-IoT)成为万物互联网络的一个重要分支。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。

NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网(LPWAN)。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。据说NB-IoT设备电池寿命可以提高至少10年,同时还能提供非常全面的室内蜂窝数据连接覆盖。

蓝牙50

蓝牙是一种无线传输技术,理论上能够在最远 100 米左右的设备之间进行短距离连线,但实际使用时大约只有 10 米。其最大特色在于能让轻易携带的移动通讯设备和电脑,在不借助电缆的情况下联网,并传输资料和讯息,目前普遍被应用在智能手机和智慧穿戴设备的连结以及智慧家庭、车用物联网等领域中。新到来的蓝牙 50 不仅可以向下相容旧版本产品,且能带来更高速、更远传输距离的优势。

Long Term Evolution Category 1(长期演进技术类别1)即LTE CAT 1 是一种众所周知的LTE标准,广泛应用于全球物联网通信行业。由3GPP(第三代合作伙伴计划)(第8版)在2008年推出以用于物联网,自推出以来一直保持显著增长。LTE Cat 1 因其广泛的覆盖范围和低成本优势而广受欢迎。LTE Cat 1 专为功能繁杂的物联网应用而设计,目前被认可为不可或缺的连接技术。LTE CAT 1 使用技术优越并可全球部署的动态系统,在全球范围内提供最佳的物联网解决方案。换而言之,LTE CAT 1 可以被称为LTE 物联网的特定变体,它使物联网网络更加智能。
LTE CAT 1的特点

• 中速LTE 标准

• 专为物联网和M2M 通信而设计

• 满足足够的上、下行数据速度

• 适用于带宽密集型物联网应用

• 超强的建筑穿透力

• 低延迟(50至100ms)

• 更高的数据传输效率

• 上行(5Mb/s)和下行(10Mb/s)

• 向下兼容3G 和2G

• 优化后的功耗延长电池寿命周期(最多5年)

• 支持低功耗的待机和睡眠模式

• 支持全双工FDD/TDD 和VoLTE(LTE语音服务)

• 室内覆盖

• 语音支持

• 移动支持

• 远程控制设备

• 超低成本

• 使用简捷

LTE CAT 1的应用

LTE CAT 1 应用于多种领域

• 自动化/交通:帮助监测车辆和各种参数、诊断信息、里程、位置、发动机使用情况、车队管理、电动滑板车等

• 安全:视频监控、交通摄像头、传输高质量视频、家庭监控、低端/基于云的摄像头、支持LTE 语音

• 移动医疗警报系统,门诊监测,预测性维护。适用于自动取款机、自动贩卖机、智能电网、资产跟踪、电表、无线支付、智能可穿戴设备。通过蜂窝网络一键通话。

LTE CAT M/LTEM/eMTC

众所周知,2017年3GPP 推出的LTE CAT M/LTEM/eMTC(第13版,这里“M”代表机器)是定义低成本机器类通信协议或简单的LTEM 协议,主要用于增强机器间的通信,这项技术相对较新,正处于发展阶段,专门为机对机通信和物联网设计使用。在实际运用中,为支持更高吞吐量设备的移动性而设计,并提供:

• 低延迟(10-15微秒)

• 上行和下行1Mbps

• 支持VoLTE

• 电池寿命长达10年

它还用于物联网平台设备。

这两种技术都被证明是物联网和M2M 通信的最佳选择。根据使用情况和覆盖率,用户可以自行选择。此外,在计算各种参数时,这两种技术都有各自优势,如Quectelcom收集的数据所示:
CAT 1 和CAT M 基础数据

LTE CAT 1 和CAT M 的对比

物联网在生活中的应用包括第二代身份z、ETC自动收费、智能物流等。

1、第二代身份z:

第二代身份z最大的改革就是它的防伪技术,第二代身份z有定向光变色“长城”图案、光变光存储“中国CHINA”字样、防伪膜、等防伪技术,二代身份z采用的是非接触式IC芯片卡和指纹感应,这是典型的物联网基础应用。

2、ETC自动收费系统:

ETC自动收费系统可以让来回的车辆在经过拦车杆时只需要减速行驶,就可以完成认证、计费,在很大程度上节省了人力和物力。但因为要升级收费系统,还需要在车辆上面安装识别芯片,所以很多地方是采用ETC与人工收费两种系统。

3、智能物流:

物联网技术同样运用到运输物流业,将转感器安装在货车和正在运输的各个独立部件上,从一开始中央系统就追踪这些货物直到结束,这样便可以全面实时的追踪这些车辆和货物行程,不仅可以实时更新货物信息,还可以防止货物被盗。

扩展资料:

物联网的运用范围:

物联网将现实世界数字化,应用范围十分广泛。物联网拉近分散的信息,统整物与物的数字信息,物联网的应用领域主要包括以下方面:运输和物流领域、工业制造、健康医疗领域范围、智能环境(家庭、办公、工厂)领域、个人和社会领域等,具有十分广阔的市场和应用前景。

在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可以查出它们的具体位置。通过物联网可以用中心计算机对机器、设备、人员进行集中管理、控制,也可以对家庭设备、汽车进行遥控,以及搜索位置、防止物品被盗等,类似自动化 *** 控系统。

同时透过收集这些小事的数据,最后可以聚集成大数据,包含重新设计道路以减少车祸、都市更新、灾害预测与犯罪防治、流行病控制等等社会的重大改变,实现物和物相联。

参考资料来源:百度百科-物联网


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13453269.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-09
下一篇 2023-08-09

发表评论

登录后才能评论

评论列表(0条)

保存