物联网对未来有什么影响?

物联网对未来有什么影响?,第1张

物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。

在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;

在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。

一、智能交通

物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;

高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。

社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。

该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。

二、智能家居

智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;

通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;

智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;

智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。

三、公共安全

近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。

美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。

利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。

趋势和特征

物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。

物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。

物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。

环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。

在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。

通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。

可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。

通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。

此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。

未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。

通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。

市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。

以上内容参考 百度百科-物联网

“云物大智”是一个比较新的概念,主要代表未来科技应用的四大领域:云计算、物联网、大数据和人工智能。

“云物大智”场景对于建立在现实世界中真正起作用的物联网系统来说非常关键。场景确定了物联网系统的布局、大数据计算的方向和商业智能的目的。物联网设备和人工智能的新型数据提取方式可以提取到关于场景的必要数据。

然而目前,无论是智能建筑、智能安防还是大到智能城市,每一个都包含了数以百万到十亿计的物体、IP地址和数据产生点,这就必须将现有的数据管理技术提升到一种全新的水平,而处理过程会在设备向计算机输入数据的沿途各个节点发生,从而数据获取、手机、存储和分析的概念将会发生巨变。传统的BI是无法应对如此庞大和复杂的数据集的。

为了解决这个问题,综合云平台及分布式计算能通过在价值链的不同节点上进行数据处理和分析 *** 作,就可能对资源进行测算并在需要它们的某个节点及时对其加以利用。

最后,基于场景的商业智能会让数据分析产生意义,提升企业的运营效率或者发现新的商业模式。

大数据分析的未来图景:万物皆可分析

在云计算、大数据之后物联网成为新晋热点话题,物联网改变了我们看待世界的方法,改变了我们做业务的方法,甚至改变我们的生活方式。但是即使是最精通技术的企业也承认,从物联网生成的数据中获取价值非常困难,需要大量技巧。

Teradata认为的数据分析未来图景是“万物皆可分析”,所以在本次大会上也发布了Teradata Listener,其是一款具有实时“听取”功能的自助式智能软件,对客户而言可跟踪他们世界各地存放的多条传感器和物联网数据流,并将该数据传送到分析生态系统中的多个平台,使得我们能够在数据源的发生地就可以进行分析。

Teradata天睿公司大中华区首席执行官辛儿伦

同时Teradata也强调,在建设数据分析系统中,要避免数据孤岛。由于单一技术无法解决全面数据分析的需求,必须简化各种技术难度,创建统一生态数据管理系统。简化是非常重要的需求,任何数据分析系统都要使得架构简化。所以,在本次大会上,Teradata还更新了其统一数据架构(UDA),推出了在单一机箱内整合Teradata数据仓库、Teradata Aster Analytics和Hadoop系统,使用户能够在更小的数据中心空间内发挥整个分析生态系统管理的优势。

在本次大会上,ZDNet采访了Teradata天睿公司大中华区首席执行官辛儿伦,以下为访谈实录:

ZDNet:2015年的大会以Breaking Big为主题,请问其寓意是什么?这是否代表Teradata对于大数据认知在概念上的颠覆?

辛儿伦:Breaking Big这个主题,我理解最核心的应该是“打破束缚和限制”,不管是企业还是个人应该探索和追求“创新、差异化、勇气、重大进展和卓越表现。”

第一,在大数据时代,企业必须坚持创新和追求创新,不管技术上寻找突破,还是从业务流程、商业模式、组织架构、企业的分析文化上,都可进行积极的创新。例如,去年我们刚刚收购的Think Big公司,帮助我们增强对Hadoop的咨询、顾问和实施能力, 以及与其它分析平台的交互能力。在本次大会上,我们刚宣布Think Big成为业内首个能够为Hadoop数据湖(数据资源池)提供全面的管理服务,这将帮助企业非常便利地创建数据分析的生态系统,确保数据质量、可靠性、实时性以及日常的运营任务。

我强调一下,我们的Think Big公司支持主要的Apache Hadoop,包括Cloudera、Hortonworks、MapR、Spark、Kafka、NoSQL以及其他开源技术,非常全面。而且更重要的是,我这里也是首次宣布,我们的Think Big业务已经确定引入到大中华区,目前已经在完成人员的配备。

第二,我觉得企业中在数据分析上的务实和积极进取的文化非常重要。其中,这个主题中提到“勇气”是企业实现大数据项目成功的重要保证。很多的企业,曾经面对大数据项目的投资犹豫、徘徊,其实这就需要更大的勇气支持。Teradata以及广大客户的反馈已经看到,我们是时候积极行动了。我们也理解,文化上的转变可能比技术和分析流程上的转变历时更久,但是我们一直强调,大数据从小做起,相信你也能很快看到大数据的价值,看到大数据分析在商业变革中带来的不可替代的驱动力。

ZDNet:每年的全球用户大会,Teradata都会发布业界注目的新产品。今年发布的产品中,您认为哪些是最具亮点的?

辛儿伦:今年,我们在大数据技术、开源技术的支持以及咨询服务上都有重要的更新和发布。这里,我特别强调一下,本次大会上最亮点的应该是针对物联网的传感器数据的分析能力,甚至实现了万物皆可分析(Analytics of Everything)。Teradata Listener技术能够通过整合开源技术,帮助客户分析物联网中不计其数的数据源,简化数据分析的难度。Teradata QueryGrid技术能在统一数据架构上快速有效地进行主题分析或查询多元化的大数据,以取得业务需要的信息。

同时,Teradata Aster新的版本能直接交互Hadoop数据资源池或数据仓库平台,帮助客户进行实时的数据探索,例如高效营销中进行客户路径和消费模式分析,等等

ZDNet:最近,Gartner发布了2016 年可能影响企业的十大技术趋势,其中万物信息化以及物联网等技术入选。在目前发展出现这些趋势之时,您怎们看技术的发展趋势?如果时间放长远一点,据您观察未来5年甚至10年,那些技术可能会成为影响企业比较显著的技术趋势?

辛儿伦:我们看到这些十大技术趋势,这些都是战略性大趋势,其中包括Information of Everything(万物信息化)以及物联网架构和平台。其实,我认为这不仅是趋势,而是新的IT现实。

关于万物信息化,可以理解为我们身处在一个数字网格之中,这个环境会产生、使用其产生的无计其数的信息。在这些数据和信息的海洋中,不管是企业还是个人,必须学会判断和识别哪些信息能够带来战略性的价值,掌握如何访问这些不同的数据源,并通过各种分析方法和算法找出其中的业务价值。

其实,这些预测也是真实IT现实的写照。实现万物皆联网或者信息化,最主要之一靠传感器技术。在我们目前生活的时代,传感器技术结合大规模并行处理能力,使我们能够测量并整体分析几乎所有现象。先进的仪器使我们能够跟踪万物的变化,例如天气变化模式、汽车驾驶习惯、乃至快餐店冰箱的温度、医院里(或家里)病人的生命体征。将这些数据采集至数据库,并运用广泛的统计、分析及可视化工具对这些数据进行细致的分析。

正是由于这些传感器,我们的生活、工作中产生了新的数据源。例如,通过射频识别读取器,我们能够进行零售库存跟踪与控制、医疗测试采样跟踪、预防欺诈行为等;通过GPS定位跟踪器,能够进行车队管理和交通运输和货运管理;通过数据采集传感器,我们就能在制造业、环境保护、交通运输系统中采集到实时的数据用于分析。

例如,西门子公司就通过部署Teradata技术提升其制造流程及产品质量。西门子首次实现了整合来自传感器、制造流程、机器生成数据,以及各种源系统的数据。西门子技术领域商业分析及监测总监Michael May博士对此说:“现在,我们可以更快、更有效地获得数据中的价值。把大数据转换为智能数据,我们将能够优化产品质量,为客户提供更加优质的服务。”

关于物联网我提两点:《2014-2015年中国物联网发展年度报告》中指出,物联网技术与云计算、大数据、移动互联网等新兴一代信息技术的协同创新进一步深化,与农业、制造业、服务业等传统产业,与新能源、新材料、先进制造业等新兴产业的“双向融合”不断加强。物联网加快向经济、社会、生活众多领域渗透,不断催生新变革、新应用和新业态。这些都是非常可喜的发展成绩。现在快速发展的物联网,以及未来的“万物皆联网”,任何人、事、物之间将能实现连接,这将带来沟通模式的变化、业务模式的变化,甚至发展模式的变化。

但是,我们更要强调,要想让物联网发挥出价值,企业必须对传感器数据进行整合和分析,并把分析结果利用到生产流程中来,而由大数据驱动的物联网才是有价值的物联。

由于物联网数据都是非结构化数据,这种JSON数据的分析都非常复杂。在今年5月,我们就宣布首次在同一数据库实现三大JSON数据格式的原生存储,这将为客户提供更强的查询性能。通过对Teradata数据库升级,能够帮助业务用户充分利用网页应用、传感器和物联网机器生成JSON数据的商业价值。而Teradata数据库具备分析JSON数据、 *** 作数据和历史业务数据的强大功能,而这一顶级查询性能使其成为物联网分析枢纽。此外,本次大会上发布的Teradata Listener是一款自助式智能软件,具有实时“听取”功能,可协助客户跟踪他们世界各地存放的多条传感器和物联网数据流,并将该数据传送到分析生态系统中的多个平台,这些都是巨大的技术突破。

针对未来更长时间的趋势预测,如果从更加宏观的角度看,我们先梳理一下整个IT 行业的发展,然后就能看到未来的发展趋势。过去从70或者80年代开始,对整个IT产业的关注,不管是产业给予的专注,还是IT供应商的专注,或是企业对于成立自己的IT部门的专注,更多的是一种小I大T的专注,什么叫小I大T?小的专注于Information能够体现的价值,而大量专注于运用用和研发Technology方面的议题。这就是小I大T,更多地认为IT就只是Technology这个课题,但是我们要注意IT不仅仅是Technology,IT是两个课题,是Information和Technology。

随着技术的发展,现在的技术能够承载的Information的价值度是迅速提升的,,未来更多的机会会更多在Information这个主题,延伸出来未来10年、20年、30年的前景。特别是未来这30年,这个时代将会是大I小T的时代,更多的主轴是在Information主题。,

ZDNet:从Teradata以及服务客户的经验看,如果让您建议一个企业要建立起自己的大数据战略,应该要去准备什么战略?

辛儿伦:首先建议客户要先问自身几个问题,那就是为什么要建立自己的大数据战略?是什么业务发展方向需要数据驱动型战略?。大数据战略要针对具体的业务场景,有了明确的业务场景目标,建设驾驭大数据的能力才有针对性性和使命感。

例如某企业要提升他的客户价值贡献度,希望建立起大数据战略,能够通过与客户的多种互动渠道的信息中获得洞察例如通过360度的统一客户视图等,在正确的时间、正确的地点、适当的方式,提供这位客户需要的服务或产品。又如金融机构通过建立起针对风险控制的大数据战略,能够发现和判断自己企业面对的风险以及危害程度,如担保圈分析等。如电信运营商可以通过建立针对客户服务品质优化的大数据战略,发现即将离网的用户等,提高自己的业务支持并挽留用户。

但是,在这里我要强调一点,数据驱动型战略不等同于数据收集战略,目前企业应尽量避免“存而不用”,建立大数据能力绝不是收集数据、存数据。

根据我们协助全球许多客户建设高效的大数据战略呢?,我想分享几个成功的关键:

第一,全面。企业需要采取宏观视角来识别构成高效体系的诸多不同要素,将不同的数据集(比如内部和外部数据流,或来自企业不同职能部门的信息)链接起来,通过关联分析,找出富有意义的信息。

第二,以业务为核心。针对大数据的战略规划应当以业务为导向,大数据战略并非科学项目,而是必须以满足实际的业务需求为核心。

第三,灵活。必须考虑到未来的使用情形,大数据战略和大数据分析方法论应避免常见的限制,比如过多地依赖于单一技术或单一平台模式或过于制式的流程等;由于数据驱动的转型不会一步到位或立刻传遍整个企业,因此在制定战略时,必须认识到价值是逐步创造出来的,并将整个演变过程考虑在内。

第四,有条理且可扩展。要确保大数据战略能够得到全面贯彻,而不是导致另一大群数据孤岛的产生。

第五,数据分析、科学决策。形成以分析为导向的思维方式,并培养真正的数据驱动文化。

以上是小编为大家分享的关于大数据分析的未来图景 万物皆可分析的相关内容,更多信息可以关注环球青藤分享更多干货

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

工业物联网云平台推荐是一个基于云计算、大数据、人工智能等前沿技术的智能制造平台,它集数据采集、数据存储、数据处理、数据分析、决策支持等功能于一体,可以实现设备的远程监控、预测性维护、异常检测以及生产调度、设备管理等工业应用。

工业物联网云平台推荐的主要特点包括以下几个方面:

一、开放性

工业物联网云平台是一个开放的平台,它采用标准化的接口和协议,与各种硬件设备、传感器、机器人等工业设备实现无缝对接,与各种软件系统、应用服务实现互联互通。同时,平台还提供了丰富的API,方便开发者和企业自主开发和集成精细化的应用。

二、可扩展性

工业物联网云平台是一个高度可扩展的平台,它可以支撑海量设备数据的采集、存储、处理、分析和应用,能够灵活地满足用户的不同需求。此外,平台还提供了多样化的工具、算法和应用组件,方便用户根据实际情况进行定制化。

三、协作性

工业物联网云平台是一个强调协作的平台,它鼓励企业之间、企业和研究机构之间、企业和政府之间等多种形式的合作,共同推动工业物联网技术的创新和应用。平台还提供了多种合作机制和服务,包括共享设备、协同工作、技术支持、数据交换等,为用户提供全方位的支持。

四、安全性

工业物联网云平台推荐是一个高度安全的平台,它采用了多种安全技术和加密方案,保障用户数据的机密性、完整性和可用性。平台还提供了完善的权限管理和安全审计机制,有效防范各类网络攻击。

工业物联网云平台推荐,上海力控科技ThingNet物联网云平台是基于以往的物联网产品,以及目前市场上的各种云平台优点,精心打造的一款实现设备上云的多功能产品,该物联网云平台面向设备而使用,例如大型的空调机组、空压机、泵等等设备的上云,云平台提供从设备接入、运行监控、设备资产管理、工业数据预知分析等一站式SaaS服务,使用对象可以为设备厂家、设备运维厂家、以及相关设备管理型公司等。

关于物联网,你别被这5个大数据忽悠了

但它的概念非常模糊。在一些谈话中,不同的参与者用“大数据”所表示的意思可能有以下三种:1大量的数据;2超出传统数据库功能的数据集;3使用软件工具来分析前两个意义的数据集。

物联网最显著的效益就是它能极大地扩展我们监控和测量真实世界中发生的事情的能力。车间经理知道如果发动机发出呜呜声就说明出现了问题。一个有经验的房主知道烘干机的通风系统可能会被线头塞住,从而导致安全隐患。数据系统最终给予了我们精确理解这些问题的能力。

然而,挑战在于使这些让信息更有价值的系统和商业模型不断发展。想一下智能恒温器在峰值功率很紧张的情况下,公用事业单位和第三方能源服务企业想要每分钟准确更新能源消耗情况:通过精确调整能源并最大化节省能源,使得夏季普通的一天和节约用电的一天能够有明显的区别。但如果把时间缩短到午夜至凌晨四点间,对信息的需求就不是那么急迫了:数据主要在确定长期趋势时才能有价值。

现在从消费者的角度思考。15分钟的数据更新间隔都有可能导致超负荷。这不仅仅没有价值,还可能会造成贬低它价值的麻烦事。相反,消费者所需要的不过是一份能够指明一些趋势的月度总结表。

我经常跟人们讨论关于“数据价值”的挑战。下面的列表总结了数据的一般类别以及制造商和服务提供商所追求的机会。

五种大数据类型

状态数据

冷库中的空气压缩机是否正常运作它们中是否有一个已经罢工了不用担心,状态数据可以提供供应商和消费者关于物联网的实时动态数据。

状态数据是物联网数据中最普遍、最基础的一种。事实上所有事都会产生类似的数据,并把它作为基础。在许多市场中,状态数据更多地被用作进行更复杂分析的原材料,但它也具有它自身的重要价值。

看看Streetline是怎样找到停车位的——它创造了能够提醒订阅者空余车位的系统。当然,长期的数据能帮到城市规划者,但对于消费者来说,实时状态数据才是最重要的。

定位数据

我的货物到哪儿了它到达目的地了吗定位服务是GPS应用的必然趋势。GPS非常强大,但在室内、人潮拥挤的地方以及快速变化的环境中的效果并不明显。那些试图追踪托盘以及机械叉车的人可能会需要实时信息。

作为早期的物联网市场,农业领域也需要充分利用位置数据,因为农场主通常需要在很大的地理面积上定位自己的设备。我们已经看到了一些能够帮助人们定位钥匙的消费品的出现,这意味着在为商业和工业用户提供服务的领域存在着更大的市场,尤其是在时间紧迫时,这些领域有大量的资产需要追踪的情况下。Foursquare针对油漆仓库的发展就是抓住了这样一个巨大的机遇。

个性化数据

不要用个人数据来拒绝个性化数据。个性化数据指的是关于个人偏好的匿名数据。消费者自然会对自动化产生怀疑。因为一些住宅管理系统比起你的舒适更关心节省的成本,所以往往你不想困在一个昏暗的办公室或者冰冷的酒店客房。自动化技术同样也存在安全隐患。

尽管如此,自动化也是不可避免的。没有人会为了节省475美元而不停地用手指来试恒温器的温度。同样,那些依靠人工交互的照明系统也失败了(一些智能照明生产者希望用他们的传感器数据告诉商店的管理者何时应该打开结账通道)。挑战将围绕开发应用程序和产品规则而展开。

可供行为参考数据

把这个看作是有后续计划的状态数据。建筑物消耗了整个国家电力的73%,并且其中一大部分(根据EPA显示,最高达到30%)被浪费了。为什么呢因为对于大多数建筑物的所有者来说:能源是次要的问题。他们虽也想解决这一问题,但担心成本、精力以及一些棘手的局面所产生的损失会超出收益。

对于这一问题相应地产生了两种方法:1能够改变系统实时状态的自动化技术;2能够使人们改变行为习惯或者做长线投资的说服力。Opower开创了关于说服力的解决方案,也就是提供用户及其邻里之间使用能源的对比数据。根据他们自己的研究,这些具有说服力的数据能使能耗降低2到3个百分点。

反馈数据

你了解你的顾客的真实想法吗你也许认为你了解,但是你可能错了。在不远的将来,生产者还能分析从已销售的产品中获取的数据,从而更好地了解产品在现实世界中的使用情况。现在大部分公司并不太了解他们产品的使用状况。这些产品从分销商处装运,从零售商处销售,最后进入了千家万户。而使用者和生产者可能永远都不会有交集。

物联网创造了一个从消费者到生产者的反馈回路,在这里产品生产者可以通过适度水平的隐私、安全以及匿名性来检验产品的实际表现,并鼓励持续的产品改进和创新。

以上是小编为大家分享的关于关于物联网,你别被这5个大数据忽悠了的相关内容,更多信息可以关注环球青藤分享更多干货

北京大学商务智能研究中心主任王汉生教授在一篇文章中,提出了一个关于数据商业价值的理论框架,这个框架非常简单,就三个关键词:收入、支出、风险。
第一是收入。你要看自己的数据产品能否帮客户带来额外的收入。这里的关键词是“额外”。比如客户是卖豆浆的,以前没有你的数据分析,他每天卖100碗。有了你的数据分析之后,每天能卖150碗,多卖出去的50碗豆浆,就是你的数据带来的价值。
王汉生教授说,最理想的额外收入应该是新兴市场。比如我们放假开车出去玩的时候,会遇到堵车。这时候能不能出一个堵车险?每堵1分钟,保险公司赔你1块钱,补偿一下你郁闷的心情。传统保险公司之所以不做,是因为没办法实时监控一辆车的状态,不知道有没有堵车,更不知道堵了多久。但现在有了车联网数据,这种监控就有可能实现。这就是车联网数据带来的价值。
第二个关键词是“支出”。如果你的数据分析有可能给客户节约不必要的支出那就更好了。因为收入的增加往往有很强的不确定性,但相对来说,成本的控制是可以做到非常准确的。就像堵车险这个新兴市场,究竟能带来多少额外收入非常不确定。但如果你说有个超市,现在有100个收银员,通过技术改造,数据分析,合理安排,发现20个人就够了,直接节省了80个人的成本,这是非常确定的。
所以,如果数据分析可以节省支出,这件事更靠谱,更加可以预期。就拿中国的制造业来说,不管是生产汽车还是电脑,体量都很巨大。这些设备上的每个功能都是必须的吗?电脑上真的需要那么多USB接口吗?过去我们很难下判断,因为不知道用户是怎么使用这个设备的。但是今天有了物联网之后,这样的数据分析就有可能变成现实,这就是物联网数据的商业价值所在。
第三个关键词是“风险”。如果你的数据不能直接增加收入,也不能直接节省成本,但是可以控制风险,也有商业价值。看一个具体的例子。很多商业银行都有网上申请系统,用户通过互联网直接就能申请xyk,或者别的产品。之所以在网上做,是因为流量大、成本低、效率高。但缺点是风险比较大,有些线下才能提供的材料无法获得。这时银行为了把控风险,就只能提高在线申请的门槛,降低通过率。这样做虽然增加了安全性,把坏人拦在了外面,但同时也可能挡住了很多好人,也就是银行需要的客户。这时候,如果你能提供独特的数据和分析,帮银行更准确地区分哪些线上申请的人是好人,哪些是坏人,银行就能放心地给更多人发卡,从而增加收入。数据在这里的价值,就是把对风险的把控转化为收入的提高。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13458198.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-11
下一篇 2023-08-11

发表评论

登录后才能评论

评论列表(0条)

保存