物联网目前的安全问题有哪些

物联网目前的安全问题有哪些,第1张

 1)安全隐私
如射频识别技术被用于物联网系统时,RFID标签被嵌入任何物品中,比如人们的日常生活用品中,而用品的拥有者不一定能觉察,从而导致用品的拥有者不受控制地被扫描、定位和追踪,这不仅涉及到技术问题,而且还将涉及到法律问题。
2)智能感知节点的自身安全问题
即物联网机器/感知节点的本地安全问题。由于物联网的应用可以取代人来完成一些复杂、危险和机械的工作,所以物联网机器/感知节点多数部署在无人监控的场景中。那么攻击者就可以轻易地接触到这些设备,从而对它们造成破坏,甚至通过本地 *** 作更换机器的软硬件。
3)假冒攻击
由于智能传感终端、RFID电子标签相对于传统TCP/IP网络而言是“裸露”在攻击者的眼皮底下的,再加上传输平台是在一定范围内“暴露”在空中的,“窜扰”在传感网络领域显得非常频繁、并且容易。所以,传感器网络中的假冒攻击是一种主动攻击形式,它极大地威胁着传感器节点间的协同工作。
4)数据驱动攻击
数据驱动攻击是通过向某个程序或应用发送数据,以产生非预期结果的攻击,通常为攻击者提供访问目标系统的权限。数据驱动攻击分为缓冲区溢出攻击、格式化字符串攻击、输入验证攻击、同步漏洞攻击、信任漏洞攻击等。通常向传感网络中的汇聚节点实施缓冲区溢出攻击是非常容易的。
5)恶意代码攻击
恶意程序在无线网络环境和传感网络环境中有无穷多的入口。一旦入侵成功,之后通过网络传播就变得非常容易。它的传播性、隐蔽性、破坏性等相比TCP/IP网络而言更加难以防范,如类似于蠕虫这样的恶意代码,本身又不需要寄生文件,在这样的环境中检测和清除这样的恶意代码将很困难。
6)拒绝服务
这种攻击方式多数会发生在感知层安全与核心网络的衔接之处。由于物联网中节点数量庞大,且以集群方式存在,因此在数据传播时,大量节点的数据传输需求会导致网络拥塞,产生拒绝服务攻击。
7)物联网的业务安全
由于物联网节点无人值守,并且有可能是动态的,所以如何对物联网设备进行远程签约信息和业务信息配置就成了难题。另外,现有通信网络的安全架构都是从人与人之间的通信需求出发的,不一定适合以机器与机器之间的通信为需求的物联网络。使用现有的网络安全机制会割裂物联网机器间的逻辑关系。
8)传输层和应用层的安全隐患
在物联网络的传输层和应用层将面临现有TCP/IP网络的所有安全问题,同时还因为物联网在感知层所采集的数据格式多样,来自各种各样感知节点的数据是海量的、并且是多源异构数据,带来的网络安全问题将更加复杂

物联网设备是非标准计算设备,可无线连接到网络并具有传输数据的能力。物联网涉及将互联网连接范围从台式机,笔记本电脑,智能手机和平板电脑之类的标准设备扩展到任何范围的传统“哑”或未启用互联网的物理设备和日常物品。这些设备嵌入了技术,可以通过Internet进行通信和交互。它们也可以被 远程监视和控制。

连接的设备是生态系统的一部分,在该生态系统中,每个设备都与环境中的其他相关设备通信以自动执行家庭和行业任务。他们可以将可用的传感器数据传达 给用户,企业和其他预期的各方。这些设备可以分为三大类:消费类,企业类和工业类。

消费者连接的设备包括智能电视,智能扬声器,玩具,可穿戴设备和智能电器。例如,在 智能家居中,设备旨在感应和响应人的存在。当一个人回到家中时,他们的汽车与车库连通以打开门。进入室内后,温度调节器已经被调整到其首选温度,并且照明设置为较低的强度和颜色,因为他们的智能手表数据表明这是一个充满压力的日子。其他智能家居设备包括根据天气预报调整洒水量的洒水装置和了解最经常清洁房屋区域的机器人真空吸尘器。

企业物联网设备是旨在供企业使用的边缘设备。有各种各样的企业物联网设备可用。这些设备的功能各不相同,但往往倾向于维护设施或提高运营效率。一些选项包括智能锁,智能恒温器,智能照明和智能安全性。这些技术的消费者版本也存在。

在企业中,智能设备可以帮助举行会议。位于会议室中的智能传感器可以帮助员工确定和安排会议可用的房间,确保可以使用合适的房间类型,大小和功能。当与会人员进入会议室时,温度将根据占用情况进行调整,随着屏幕上适当的PowerPoint加载,灯光将变暗,并且演讲者开始演示。

消费者,企业和工业物联网设备的示例包括装配在会议室和装配线机器上的智能电视和智能传感器。

工业物联网设备旨在用于工厂或其他工业环境。大多数工业物联网设备是用于监视装配线或其他制造过程的传感器。来自各种类型传感器的数据将传输到监视应用程序,以确保关键流程处于最佳运行状态。这些相同的传感器还可以通过预测何时需要更换零件来防止意外停机。

如果发生问题,系统可能能够将通知发送给服务技术人员,以告知他们出了什么问题以及解决问题所需的部件。这样可以避免技术人员到现场诊断问题,然后再去仓库获取解决问题所需的零件。

物联网设备如何工作?

物联网设备在功能方面有所不同,但是物联网设备在工作方式上有一些相似之处。首先,物联网设备是旨在以某种方式与现实世界进行交互的物理对象。该设备可能是装配线上的传感器或智能监控摄像头。无论哪种情况,设备都可以感知物理世界中正在发生的事情。

该设备本身包括集成的CPU,网络适配器和固件,通常在开放源代码平台上构建。在大多数情况下,物联网设备连接到动态主机配置协议服务器,并获取该设备可用于在网络上运行的IP地址。某些物联网设备可通过公共互联网直接访问,但大多数设计为仅在专用网络上运行。

尽管不是绝对要求,但许多物联网设备是通过软件应用程序配置和管理的。但是,某些设备具有集成的Web服务器,因此不需要外部应用程序。

物联网设备配置并开始运行后,其大部分流量就出站了。例如,安全摄像头可传输视频数据。同样,工业传感器流式传输传感器数据。但是,某些物联网设备(例如智能灯)确实接受输入。

物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。其英文名称是:“Internet of things(IoT)”。
顾名思义,物联网就是物物相连的互联网。
这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。
因此,应用创新是物联网发展的核心,以用户体验为核心的创新20是物联网发展的灵魂。
在物联网应用中有三项关键技术
1、传感器技术:这也是计算机应用中的关键技术。大家都知道,到目前为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。
2、RFID标签:也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。
3、嵌入式系统技术:是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。
主流智能硬件产品主要有以下分类:
1、智能家居
智能家居是以住宅作为为基础的 *** 作平台,并且综合我们的房屋建设、网络通信以及家电信息等通过高科技技术达到设备能够自动化管理。包括智能家电、智能影音、智能遮阳、智能灯光、智能清洁、智能恒温、智能门禁、智能监控、智能防盗等。智能家居的基础是物联网,核心在于一体化控制。目前智能家居的发展还处于各个品类独立发展的阶段。
2、智能电视
智能电视不仅仅实现我们一般电视的播放功能,还能通过互联网连接实现智能 *** 作的功能。例如可以自行下载应用程序、安装或者卸载各种软件等等。
3、智能手机
智能硬件之始,起于智能手机。
4、智能汽车
智能汽车其实就是在我们的普通汽车上安装了传感器、摄像以及执行器等一系列先进的装置。当我们使用时可以通过车载传感系统实现与人和车之间信息的交换,使汽车能够感知并且能够自行分析目前的汽车行驶情况,这替代了人的 *** 作,最新产品如谷歌无人驾驶汽车等。
5、智能穿戴设备
可穿戴设备涉猎广泛,有:智能眼镜、智能手表、智能手环、智能戒指、智能颈环、智能隔音耳塞、智能衬衫、智能运动鞋等等。
6、智能防丢设备
智能防丢设备是通过对软硬件进行整合,可以实现将我们的手机、自行车、钱包等物品实现相连的 *** 作,这样任何意见物品丢失都会提示给我们。如奥星澳蓝牙防丢器。
7、智能蓝牙耳机
现在有很多的手机会有蓝牙这个功能,因此蓝牙耳机势必会成为手机的选件。同时,随着蓝牙耳机可以连接到移动电话和音乐播放器,这将是蓝牙应用的一个新的突破。
8、智能医疗设备
代表产品智能血压计/血糖仪、智能假肢等。
随着科技的发展,肯定还会有很多的智能硬件的出现,比如游戏类、空气净化类产品等。
说白了,物联网就是物物网络,把所有现实中的东西通过传感器编程数据,然后通过收集和控制这些数据来 *** 控现实生活中的各种食物。由检测,传输,数据处理控制来完成一系列的动作。就像人的神经网络接收了外在的感觉然后传输给脑袋来处理一样。
物联网最初是想实现在艰苦环境下的数据收集,因为人不能长时间待在恶劣的环境中收集数据,所以希望用电子产品来远程收集这些数据。
1,像海洋环境监测之类的环境监测方面用的比较早。
2,然后就是军事方面较早开始应用来收集战场数据,因为军事的首要目的不是科技效益,而国家的大笔军事资金提供了先行研究应用的可能。美军研究出来的信息尘埃已经应用于实际的战争中了。
3,因为物联网设备并不便宜,有很多硬件上的问题还未解决,所以从技术和成本上来考虑,暂时还很难大规模普及于民用。但是其未来却已经计划出了一些蓝图。
a应用于医疗方面
关于病人各项数据的持续检控在医疗上来说是很重要的环节,如果用人力实现这个将是费时费力的。而用物联网之后,可以由机器来实现,并值班医生护士进行提醒和报警之类的动作,将节省大量人力物力,而且效果将更加好,就像有位24小时陪伴的护士在身边。
b应用于家居方面
智能家居的应用将靠物联网得到更大的发展,哪怕人不在家也可以清楚和 *** 控家里的一切。到时家就像一部智能电脑,可以任你控制。
c应用于各种检测
机械修理需要知道机械故障在哪,往往是先通过个人的判断,然后将机械拆解到一定程度来检测是哪个地方有问题。用物联网中的传感器来检测可以提高检测效率,由计算机来判断是哪有问题。对于这个其实已经实现了。
像建筑物的长期质量监控也需要用到,一旦大楼出现质量问题,物联网可以自动警报,防止悲剧的发生。而汽车,飞机之类的也可以用这些来提高保障。
d网络安全方面的应用。物联网也是网络,它其实是因特网的一种延伸产品,既然是因特网的一部分,那么必然有骇客,有入侵。而物联网将比因特网更加贴近人们生活的实质,所以这方面的网络安全人们将愿意花费更多的金钱去保障。
c电信服务之类
物联网将使手机电话之类的交流手段得到更进一步的提升,有一天物联网将作为网络的一部分称为电信部门的另一种产品,就像电话,短信一样。
物联网的作用实在太广了,将其与个个行业结合都可以产生一种新的产品。而目前最看好的是以上几种。研究物联网一般电子业,计算机和通信专业的学生比较多。我本人就是通信专业的。目前也正在国外留学研究物联网。
这些是我目前对物联网的一些信息,写出来希望对你有帮助。

物联网十大应用范畴如下:

一、设备监控:像监控或者调节建筑物恒温器这样的事情可以远程完成,甚至可以做到节约能源和简化设施维修程序。这种物联网应用的美妙之处在于,它很容易实施,容易梳理性能基准,并得到所需的改进。

二、机器和基础设施维护:传感器可以放置在设备和基础设施材料上,例如铁路轨道,来监控这些部件的状况,并且在部件出现问题的时候发出警报。一些城市交通管理部门已经采用了这种物联网技术,能够在故障发生之前进行主动维护。

三、物流和追踪:运输业现在把传感器安装在移动的卡车和正在运输的各个独立部件上。从一开始中央系统就追踪这些货物直到结束。

这么做可以防止货物在边远地区被盗窃,让企业供应链可以保持追踪,因为管理层可以在任何时间点清楚地看到车辆的位置(以及车辆应该在的位置)。

四、集装箱环境:同样是在物流和运输行业,运送装着易腐货物的集装箱是对周围环境条件进行监控的,如果超出温度或者湿度范围传感器会发出警报。

此外,当集装箱被弄乱或者密封被破坏的时候,传感器也会发出警报。这个信息是实时通过中央系统直接发送给决策者的,这样情况可以得到补救,即使这些货物是在全球各地的运输途中。

五、机器管理库存:向消费者提供了各种商品的自助服务售卖机和便携式商店,现在可以在特定商品低于再订购水平的时候发送自动补充库存警报。这种做法可以为零售商节约成本,因为他们只需要在机器告诉他们需要补充库存的时候让现场工作人员进行补货。

六、网络数据用于营销:企业可以选择利用自己的分析,追踪客户在网络中的行为,或者他们可以将这个任务外包给在这个领域内有声誉的营销公司。

在网站的导航模式中,访客来到或者来自你的网站,访客所使用的设备类型,以及其他关于访客的相关数据,可以聚合起来以更全面地了解。交易数据和物联网数据的结合,将会丰富你的营销分析及预测,可以快速实施。

七、识别危险网站:商业公司提供的安全服务,可以让网络管理员追踪机器对机器的交流,追踪来自公司计算机的互联网网站访问,揭示公司计算机定期访问的“危险”网站和IT地址。

实践会降低网络遭受恶意软件和病du入侵的风险。因为这种“观察”服务是从云厂商那里提供的,所以实施简单,企业可以马上开始。

八、无人驾驶卡车:在气候条件恶劣和没有道路基础设施的边远地区,石油和天然气开采行业的企业正在使用无人驾驶卡车,这种卡车可以远程控制和远程通信。这降低了运营费用,因为你不用派人进入该领域,还可以避免在已知极其危险的区域发生事故。

九、WAN监控:企业可以很好地监控和修改他们的网络流量,但是当这个流量通过广域网或者互联网路由的时候,有时候似乎是在他们控制范围之外的。

现在位于全球不同地点的办公室的边缘路由器,会显示出显著不同的服务质量,这取决于这个办公室是在新加坡或者里约热内卢。如果IT希望更好地监控互联网流量,那么可以购买商业服务,实时显示哪些地方放缓了,甚至可以重新路由流量以保持通信畅通。

十、GPS数据聚合:GPS数据聚合是应用最广泛的物联网数据收集方法之一。企业喜欢它是因为可以让他们统计人口数据、天气数据、基础结构数据、图形数据和任何可以并定位到特定地理位置的数据类型。很多厂商可以帮助你,以对业务有意义的方式聚合GPS数据。

数据分析、机器学习与物联网
我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13466961.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-12
下一篇 2023-08-12

发表评论

登录后才能评论

评论列表(0条)

保存