回转窑的测温有哪些方法

回转窑的测温有哪些方法,第1张

回转窑测温,以前是用热电偶+滑环测温,因为滑环使用时间长了以后会变形、氧化。所以经常会有信号丢失现象,效果不理想。
现在基本上都是用SLD-RFT系列回转窑无线测温系统,专门针对回转窑设计的无线测温系统。有多点和单点可以任意组合使用。不用布线供电。SLD-RFT-3回转窑无线测温系统是SLD-RFT系列无线温度变送器中的一种,是专门针对需要三点同时测温的场合设计的无线测温系统,它可同时对三路相同型号的热电偶进行温度采样,再无线传输给显示仪表和上位机,不仅同时显示三路温度,每一路还具有双报警监控、4~20mA变送和MODBUS-RTU通讯功能。方便使用于一个回转窑的窑头、窑中、窑尾温度测量。
型号 型号说明 功能描述 备注
SLD-RFT-1为1发射端+1接收端 发射时间可调,接收端显示温度,并带4~20mA输出,上下限报警输出 可配接各种热电偶、热电阻
SLD-RFT-3为3发射端+1接收端 发射时间可调,接收端同时显示3路温度,并带3路4~20mA输出,3路上下限报警输出 可配接各种热电偶、热电阻,带485通讯功能(标准MODBUS-RTU协议)。
具体的回转窑无线测温系统详细参数,和产品外形尺寸、安装图纸可以百度公司网站xasld(前、后自己补全,手机和电脑均可直接浏览)

这是俺论文的第一部分,希望对你用!!!!!
11 国内外温度检测技术研究现状
温度是在工业、农业、国防和科研等部门中应用最普遍的被测物理量。有资料表明,温度传感器的数量在各种传感器中位居首位,约占50%左右。因此,温度测量在保证产品质量,提高生产效率,节约能源,安全生产,促进国民经济发展等诸多方面起到了至关重要的作用。
111 常用的温度测量方法
根据测温方式的不同,温度测量通常可分为接触式和非接触式测温两大类。
接触式测温的特点是感温元件直接与被测对象相接触,两者进行充分的热交换,最后达到热平衡,此时感温元件的温度与被测对象的温度必然相等,温度计就可据此测出被测对象的温度。因此,接触式测温一方面有测温精度相对较高,直观可靠及测温仪表价格相对较低等优点;另一方面也存在由于感温元件与被测介质直接接触,从而影响被测介质热平衡状态,而接触不良则会增加测温误差;被测介质具有腐蚀性及温度太高亦将严重影响感温元件性能和寿命等缺点。根据测温转换的原理,接触式测温又可分为膨胀式、热阻式、热电式等多种形式。
非接触式测温的特点是感温元件不与被测对象直接接触,而是通过接受被测物体的热辐射能实现热交换,据此测出被测对象的温度。因此,非接触式测温具有不改变被测物体的温度分布,热惯性小,测温上限可设计的很高,便于测量运动物体的温度和快速变化的温度等优点。两类测温方法的主要特点如下表11所示。
表11 两种测温方法的主要特点
方式 接触式 非接触式
测量条件 感温元件要与被测对象良好接触;感温元件的加入几乎不改变对象的温度;被测温度不超过感温元件能承受的上限温度;被测对象不对感温元件产生腐蚀。 需准确知道被测对象表面发射率;被测对象的辐射能充分照射到检测元件上。
测量范围 特别适合1200度、热容大、无腐蚀性对象的连续在线测温,对高于1300度以上的温度测量比较困难。 原理上测量范围可以从超高温到超低温。但1000度以下,测量误差比较大,能测运动物体或热容小的物体温度
精度 工业用表通常为10、05、02、01级,实验室用表可达001级。 通常为10、15、25级
响应速度 慢,通常为几十秒到几分钟 快,通常为2-3秒钟
其他特点 整个测温系统结构简单、体积小、可靠、维护方便、价格低廉。仪表读数直接反映被测物体温度,可方便的组成多路集中测量与控制系统。 整个测量系统结构复杂、体积大、调整麻烦、价格昂贵;仪表读数通常反映被测物体表面温度(需进一步转换);不易组成测温控温一体化的温度控制装置。
从温度检测使用的温度计来看,主要包括以下几种:
1.利用物体热胀冷缩原理制成的温度计
利用物体热胀冷缩制成的温度计分为如下三大类:
(1)玻璃温度计:利用玻璃感温包内的测温物质(水银、酒精、甲苯、油等)受热膨胀、遇冷收缩的原理进行温度测量。
(2)双金属温度计:采用膨胀系数不同的两种金属牢固粘合在上一起制的双金属片作为感温元件,当温度变化时,一端固定的双金属片,由于两种金属膨胀系数不同而产生弯曲,自由端的位移通过传动机构带动指针指示出相应温度。
(3)压力式温度计:由感温物质(氮气、水银、二甲苯、甲苯、甘油和沸点液体如氯甲烷、氯乙烷等)随温度变化,压力发生相应变化,用d簧管压力表测出它的压力值,经换算得出被测物质的温度值。
2.利用热电效应技术制成的温度检测元件
利用此技术制成的温度检测元件主要是热电偶。热电偶发展较早,比较成熟,至今仍为应用最广泛的温度检测元件。热电偶具有结构简单、制作方便、测量范围宽、精度高、热惯性小等特点。常用的热电偶有以下几种。
(1)镍铬一镍硅,型号为WRN,分度号为K,测温范围0-900℃,短期可测1200℃。
(2)镍铬—康铜,型号为WRK,分度号为F,测温范围0-600℃,短期可测800℃。
(3)铂铑一铂,型号为WRP,分度号为S,在1300℃以下的使用,短期可测1600℃。
(4)铂铑3旺铂铐6,型号为WRR,分度号为B,测温范围300-1600℃,短期可测1800℃。
3.利用热阻效应技术制成的温度计
用热阻效应技术制成的温度计可分成以下几种:
(1)电阻测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。目前常用的有铂热电阻和铜热电阻。
(2)半导体测温元件,它与热电阻的温阻特性刚好相反,即有很大负温度系数,也就是说温度升高时,其阻值降低。
(3)陶瓷热敏元件,它的实质是利用半导体电阻的正温特性,用半导体陶瓷材料制作而成的热敏元件,常称为PCT或NCT热敏元件。PCT热敏分为突变型及缓变型二类。突变型PCT元件的温阻特性是当温度达到顶点时,它的阻值突然变大,有限流功能,多数用于保护电器。缓变型PCT元件的温阻特性基本上随温度升高阻值慢慢增大,起温度补偿作用。NCT元件特性与PCT元件的突变特性刚好相反,即随温度升高,它的阻值减小。
4.利用热辐射原理制成的高温计
热辐射高温计通常分为两种。一种是单色辐射高温计,一般称光学高温计;另一种是全辐射高温计,它的原理是物体受热辐射后,视物体本身的性质,能将其吸收、透过或反射。而受热物体放出的辐射能的多少,与它的温度有一定的关系。热辐射式高温计就是根据这种热辐射原理制成的。
112 国内外温度检测技术现状及发展趋势
近年来,在温度检测技术领域,多种新的检测原理与技术的开发应用,已经取得了重大进展。新一代温度检测元件正在不断出现和完善,它们主要有以下几种:
1.晶体管温度检测元件
半导体温度检测元件是具有代表性的温度检测元件。半导体的电阻温度系数比金属大l~2个数量级,二极管和三极管的PN结电压、电容对温度灵敏度很高。基于上述测温原理己研制了各种温度检测元件。
2.集成电路温度检测元件
利用硅晶体管基极一发射极间电压与温度关系(即半导体PN结的温度特性)进行温度检测,并把测温、激励、信号处理电路和放大电路集成一体,封装于小型管壳内,即构成了集成电路温度检测元件。目前,国内外也进行了生产。
3.核磁共振温度检测器
所谓核磁共振现象是指具有核自旋的物质置于静磁场中时,当与静磁场垂直方向加以电磁波,会发生对某频率电磁的吸收现象。利用共振吸收频率随温度上升而减少的原理研制成的温度检测器,称为核磁共振温度检测器。这种检测器精度极高,可以测量出千分之一开尔文,而且输出的频率信号适于数字化运算处理,故是一种性能十分良好的温度检测器。在常温下,可作理想的标准温度计之用。
4.热噪声温度检测器
它的原理是利用热电阻元件产生的噪声电压与温度的相关性。其特点如下:
(1)输出噪声电压大小与温度是比例关系;
(2)不受压力影响;
(3)感温元件的阻值几乎不影响测量精确度;
因此,它是可以直接读出绝对温度值而不受材料和环境条件限制的温度检测器。
5.石英晶体温度检测器
它采用LC或Y型切割的石英晶片的共振频率随温度变化的特性来制的。它可以自动补偿石英晶片的非线性,测量精度较高,一般可检测到0001℃,所以可作标准检测之用。
6.光纤温度检测器
光纤温度检测器是目前光纤传感器中发展较快的一种,己开发了开关式温度检测器、辐射式温度检测器等多种实用型的品种。它是利用双折射光纤的传输光信号滞后量随温度变化的原理制成的双折射光纤温度检测器,检测精度在士1℃以内,测温范围可以从绝对0℃到2000℃。
7.激光温度检测器
激光测温特别适于远程测量和特殊环境下的温度测量,用氮氖激光源的激光作反射计可测得很高的温度,精度达l%;用激光干涉和散射原理制作的温度检测器可测量更高的温度,上限可达3000℃,专门用于核聚变研究但在工业上应用还需进一步开发和实验。
8.微波温度检测器
采用微波测温可以达到快速测量高温的目的。它是利用在不同温度下,温度与控制电压成线性关系的原理制成的。这种检测器的灵敏度为250kHZ/℃,精度为1%左右,检测范围为20~1400℃。
从以上材料可以看出,当前温度检测的发展趋势组合要集中在以下几个方面:
a.扩展检测范围
现在工业上通用的温度检测范围为一200~3000℃,而今后要求能测超高温与超低温。尤其是液化气体的极低温度检测更为迫切,如10K以下的度检测是当前重点研究课题。
b.扩大测温对象
温度检测技术将会由点测温发展到线、面,甚至立体的测量。应用范围己经从工业领域延伸到环境保护、家用电器、汽车工业及航天工业领域。
C.新产品的开发
利用以前的检测技术生产出适应于不同场合、不同工况要求的新型产品,以满足用户需要。同时利用新的检测技术制造出新的产品。
d.加强新原理、新材料、新加工工艺的开发。
如近来已经开发的炭化硅薄膜热敏电阻温度检测器,厚膜、薄膜铂电阻温度检测器,硅单晶热敏电阻温度检测器等。
e.向智能化、集成化、适用化方向发展。
新产品不仅要具有检测功能,又要具有判断和指令等多功能,采用微机向智能化方向发展。向机电一体化方向发展。
12课题的工程背景
在工业领域,温度、压力、流量是最常见的三大被检测的物理参数,其中最广泛的还是温度量的测量,随着电子技术、计算机技术的飞速发展,对现场温度的测量也由过去的刻度温度计、指针温度计向数字显示的智能温度计发展,而且,对测量的精度要求也越来越高。当然,对不同的工艺要求,其测量的精度要求不尽相同,这些是显而易见的,譬如,在测量电机的轴温时,可能测量的允许差达l℃以上,但在某些场合,温度的检测与控制需要达到很高的精度。以化工生产中联碱行业为例,联碱外冷器液氨致冷技术作为80年代中期化工部重点推广的技改项目之一,已被各联碱厂相继采用,并在生产实践中得到不断改进,已成为业内公认的一项成熟、有效的节能降耗技术。但至今仍存在外冷器生产能力偏低、运行周期短和节能效果不理想等问题。而外冷器进出口母液温差是影响外冷器生产能力和运行周期的一个重要因素,从长期的生产经验看,混合溶液每次流经外冷器时,进、出口温差以05℃为宜。因此,精确测量与控制通过外冷器混合溶液的进、出口温差是指导该生产工艺的一个重要环节。
事实上,由于精度要求较高,在实际生产中该环节的温差测控问题一直没能得到很好解决。经调研知,在全国范围内几乎所有化工集团的联碱行业的生产情况都如此,他们迫切希望能解决这一问题。在其它许多场合(如发酵工艺)中,温度的准确测量与控制同样具有相当强的实践指导作用。目前,虽然国内外已有很多温度测控装置,但温度测量的精度达到05℃,并能适用于类似制碱工艺要求的外冷器低温差的精确检测与控制在国内尚属空白。该课题的研究能实现外冷器温差的高精度检测与控制,可推广应用到其它化工生产过程及其相关领域中需要对温差与温度进行高精度实时测控的场合。因此,研发高精度温度与温差测控系统具有很好的应用前景。

新型电力系统的“新”主要表现为以下几个方面:

电源结构由可控连续出力的煤电装机占主导,向强不确定性、弱可控性出力的新能源发电装机占主导转变。

负荷特性由传统的刚性,纯消费性向柔性、生产与消费兼具型改变。

电网形态方面,传统电力系统是单向逐级输电为主,新型的包括交直流混联大电网、微电网、局部直流电网和可调节负荷的能源互联网。

运行特性的转变,传统电网是由“源随荷动”的实时平衡模式,大电网一体化控制模式。

新型电力系统是向“源网荷储”协同互动的非完全实时平衡模式,大电网与微电网协同控制模式转变。新型电力系统基本五大特征是清洁低碳、安全可控、灵活高效、智能友好、开放互动。

在新型电力系统下,电网运行逐渐呈现智能化、数字化的特点。发展“源网荷储一体化”运行急需“云大物移智链边”其中的云计算、大数据、电力物联网、边缘计算等技术手段,让电网系统配备拥有海量数据处理分析、高度智能化决策等能力的云端解决方案。从而实现各类能源资源整合、打通能源多环节间的壁垒,让“源网荷储”各要素真正做到友好协同。

数字技术为新型电力系统建设带来诸多新可能:广泛互联互通、全局协同计算、全域在线透明、智能友好互动。因此,新型电力系统建设必然要求数字技术与能源技术深度融合、广泛应用,实现电网数字化转型。电网数字化转型与新型电力系统构建需要相互作用、相融并进,没有电网数字化转型就没有新型电力系统。

智慧“双碳”微电网场景进行数字孪生,有效实现源网荷储一体化管控。整体场景采用了轻量化建模的方式,重点围绕智慧园区电网联通中的源、网、荷、储四方面的设备和建筑进行建模还原。

采用轻量化重新建模的方式,支持 360 度观察虚拟园区内源网荷储每个环节的动态数据,通过自带交互,即可实现鼠标的旋转、平移、拉近拉远 *** 作,同时也实现了触屏设备的单指旋转、双指缩放、三指平移 *** 作不必再为跨平台的不同交互模式而烦恼。

还搭建过智慧电力可视化解决方案,以数字化为载体,依托数据共享优势,将专业横向融合,打破系统间的信息壁垒,把不同类型的分布式资源“聚沙成塔“,构建源网荷储一体化互动体系。实现从能源生产侧到应用侧的数据监测、数据融合、数据显示、设备维护联动管控,让“源网荷储”各要素真正做到友好协同。

围绕电厂负荷监测、调节策略、执行考核与效果分析三个层级,部署一套具备自主调控、快速响应、科学研判的综合性、多功能、集约化智慧电力综合管控平台。

可视化大屏将碎片化、小规模、多类型的分布式电源(Distributed Generator, DG)、储能系统、柔性负荷等众多可调节资源进行聚合协调。从负荷预测、运行效果、调度优化、电网互动、策略配置、市场交易等维度出发,贯穿了发、输、变、配、用各个环节。深化电力需求侧管理,实现对分布式资源的实时采集与科学配置。同时为并网运行后,对大电网的调频、调峰、调压等做辅助支撑,缓解电网运行压力。

应用丰富的图表组件,选以分类、组合、排序等风格,简化数据浅显易懂,让分类施策取代粗放管理,让系统量化分析取代决策者主观判断,让决策者一眼望穿负荷特性,并在必要的时刻及时调整配网运行方式。在强化电厂的运行调控能力的同时,也提高了经济效益降低防范风险。

可视化大屏有效聚合可控负荷的模式,突破传统电力系统之间的界限,充分激发和释放用户侧灵活调节能力,通过市场化因素引导用户用电行为调整负荷曲线,促进能源供应效益最大化。过去离散刻板的静态数据在Hightopo可视化技术的加持下,充分激发了数字的活力,赋予动态的加载效果,更加利于揭示数据之间复杂关系。

同样也支持采用 3D 轻量化建模形式,将多种复杂的电力管理信息聚集在虚拟仿真环境下,结合专业分析预测模型,对运维设备、运行状态、控制系统进行实时动态采集与多角度并行分析,辅助决策者管理工作的颗粒度更精细、响应更敏捷、行为更智能。

新型电力系统发电侧重主体发生变化了,以后以光伏和风电等新能源发电为主,这样就会从原来集中式电源模式变成“集中和分布式”共同发展的模式。同时由于光伏和风电具有波动性、间歇性和随机性的特点,所以储能在新型电力系统的运作中就变得尤为重要。所以新型电力系统就是要建立“源网荷储”的运作模式,也就是电源、电网、负荷、储能各环节协调互动,实现安全稳定的运行。

可视化把不同类型的分布式资源“聚沙成塔“,构建源网荷储一体化互动体系。实现从能源生产侧到应用侧的数据监测、数据融合、数据显示、设备维护联动管控,让“源网荷储”各要素真正做到友好协同。

热敏电阻价格高,不线性,需要复杂的恒流源伺服电路。数据处理复杂。热电偶要加上补偿电路且材料价高。以上两种方案还都须要A/D转换器。DS18B20只需三根导线和一个电阻。不需要其他任何外围电路即可测得温度数据。故电路非常简单。

应该是珠海施诺电力科技有限公司的,可能是笔误。正确型号为S359TMS359TMS359TM无线测温系统的优势本产品为国内领先水平的电力高压设备温度在线监测系统。该系统设计构思独特,采用无线传输温度信号,理想地实现了一次高压设备和二次监测设备的电气隔离,保证了系统运行的安全可靠。是一项在电力安全运行、维护领域有着广泛应用价值和前景的新型高科技产品。是传统测温方式的一次革命。本产品采用先进的感温电子元件与无线传输方式相结合。将温度传感器紧贴到高压设备、母线或电缆接点、断路器触头等位置,安装快捷方便,直接测量温度。利用24G的zigbee射频技术传递温度信息,实现了传感器和被测点等电位,安全可靠。传感器由高能锂电池供电,寿命长达5年。监测仪配有液晶显示器实时显示所有被测点温度,超温告警时有常开和常闭两组信号节点输出。装置具有标准RS485串行通信口,可直接与上位计算机相联组成本地温度监测网络。还可以通过局域网或GPRS移动通信网将所有数据上传监控中心,组成大范围的远方温度监测网络。并提供上位机接收、存储、打印、数据分析程序软件。也可以通过综自系统将数据上传。31S359TM无线测温系统技术特点采用24G免申请频段。采用ZigBee技术,符合IEEE802154标准。直接序列扩频(DSSS),采用AES128加密标准,抗干扰能力更强。极低的发射功率,不会对其他设备产生干扰。超长电池寿命:大于5年。温度传感器与监测仪之间无任何连线,安装简便,运行安全。32S359TM无线测温系统优势安全性高温度传感器和被测点等电位。采用射频技术传输温度数据,没有任何外接连线。而光纤测温方式有光纤引出,从而安全性降低。可靠性高射频技术不受震动以及灰尘的影响。而红外测温方式会因震动以及灰尘的原因而降低可靠性和测温精度。安装方便温度传感器体积小,可以方便的安装在开关触头,电缆接头等安装空间狭小的被测点上,与接收装置之间没有接线。光纤测温方式需要放置光纤;红外测温方式需要调整接收装置的位置,安装都不方便。组网灵活系统可通过RS485总线,组成本地温度监测网络。还可以通过局域网或GPRS移动通信网将所有数据上传监控中心,组成大范围的远方温度监测网络。4、无线温度传感器介绍41温度传感器工作原理无线式温度传感器用于测量运行中的高压设备的温度,如变压器套管、断路器触头、刀闸触头和电缆接头等。无线式温度传感器是由数字感温元件、逻辑控制电路、射频收发电路和电源管理电路组成,如图4-1所示。传感器定时进行温度测量,并将温度数据通过射频方式发送到温度监测仪。图4-1无线式温度传感器功能结构图42温度传感器性能指标温度测量范围:-55℃~+125℃精度:±05℃分辨率:05℃高压耐受电压:95KV雷电冲击电压:185KV温度测量周期:约120s(根据用户需要可调)传输距离:200米供电电源:锂电池工作时间:大于5年外形尺寸:56mm×27mm×17mm4-3温度传感器外形及安装方式无线温度传感器为一体化结构,内部采用高温高能锂电池供电,内置LTCC天线。外部采用高温高压热缩管封装,防水防尘,体积小巧。最适用于空间狭小的安装位置,也可用于户外高压设备。外形见图4-2所示。图4-2无线温度传感器无线温度传感器的底面是感温面,为了准确测量物体表面的温度,应保证传感器的感温面与被测物体的表面紧密接触。安装时可用高温尼龙扎带或采用导热硅胶粘结等方法将其固定在被测物体上。安装见图4-3所示。图4-3无线温度传感器安装5、温度监测仪51温度监测仪性能指标工作电压:AC220V或DC220V温度显示:LCD显示器,带背光报警设定值:75℃(根据用户需要可调)报警输出:1对无源接点,250Vac/06A或24Vdc/5A通讯接口:RS-485工业总线接口电源端子对地绝缘电阻:≥100MΩ电源端子对地工频耐压:2000V(1min)工作温度:-10℃~+80℃存储温度:-40℃~+85℃监测数量:96点/每台安装方式:嵌入式盘装,外形尺寸:115mm×90mm×45mm52温度监测仪显示功能无线温度监测仪显示的内容有告警温度,检测仪地址,运行指示,温度及信号强度。监测仪能够每页同时显示6个或12个温度传感器的温度。在LCD显示屏的右上角有一个字母“T”,“T”闪烁表示监测仪正常工作。如图5-1。图5-1无线温度监测仪53温度监测仪报警功能无线温度监测仪具有独立的报警功能,初始设定的报警值是75℃。当任一测温点测得的温度值超过设定的报警值时,仪表报警就会动作。报警方式有2种:显示:温度在LCD显示屏上反显(黑底绿字)以指示报警。节点:1个常开和1个常闭无源节点动作。54温度监测仪通讯接口无线温度监测仪具有标准工业级的带隔离RS-485接口,支持网络方式运行,该接口用于与上位计算机通信,接口可以支持每个站128个无线温度监测仪联网运行。55温度监测仪接线端子及功能定义无线温度监测仪的可插拔接线端子用于仪表的电气连接,该端子可以带电插拔,这是一个8位端子,它包括供电电源、通讯接口和报警输出接点,其功能定义如图5-2。图5-2监测仪接线端子定义端子号名称功能说明1NOstate报警输出的无源节点,常开节点2Com报警输出的公共端子3NCstate报警输出的无源节点,常闭节点4RS485(+)RS-485通讯接口正端子(A)5RS485(-)RS-485通讯接口负端子(B)6PE保护地7Power(L)工作电源端子8Power(N)工作电源端子56温度监测仪外形尺寸及安装方式温度监测仪是一台可盘装的显示表,测温仪一般安装在开关柜的二次室柜门上或其他控制屏及端子箱内,以方便监视温度数据。如图5-3,安装开孔尺寸如图5-4。图5-3温度监测仪安装图5-4温度监测仪安装开孔尺寸6、无线测温系统结构和远传组网方式S359TM系统通过连续监测高压设备的运行温度,可确定设备的过热程度,当发生超温时,系统能够发出报警指示。对于高压开关柜测温,一般每个开关柜配一台监测仪,一台监测仪可带3至12个温度传感器,监测仪安装在开关柜的柜门上。对于电力系统室外站,一台监测仪可带96个温度传感器,监测仪的安装位置和温度传感器的数量可根据具体情况决定。对于有人置守的变电站,监测仪可通过标准RS485总线将数据传至主控室后台计算机,计算机安装单机版分析监测软件组成本地监测网络。对于无人置守的变电站,可通过系统局域网或GPRS移动通信网将数据传至监控中心服务器,服务器安装网络版分析监测软件组成远方监测网络。也可以通过综自系统将数据上传。图6-1无线测温网络组成7、无线测温系统后台软件S359TM-SCADA温度在线监测管理分析软件是一套专门用于高压设备温度实时监测和数据管理分析的软件系统。该软件运行在上位计算机上,可实现温度实时显示、历史数据记录和对比分析、预警及报警、运行状态全程记录以及报表打印及EXCEL导出等功能。网络版软件具有市局、县局和变电站的多级管理体系。具有多级用户权限设置以保障系统的安全性。支持基于WEB方式的网络浏览功能,在局域网内的任意一个终端都可以看到实时的温度数据,并且可以在相应的权限内进行系统配置。该软件可以帮助运行人员监测和分析对比高压设备监测点的温度变化情况,及时预测出故障发生的部位,为运行人员和决策层提供最直接可靠的数据依据,从而最大限度的消除事故隐患。保证高压设备的安全运行。该软件需要单独定购。单机版监测系统软件主界面网络版监测系统软件主界面报警界面数据统计报表8、应用范围刀闸及断路器触头高压母线和电缆接头变压器电抗器电容器互感器9、保修及维护本公司提供一年有限保修期,在保修期内,若产品存在质量问题,您将得到无偿的维修服务,本公司能够常年提供产品的备品备件,并对产品提供终身维护。因不可抗拒自然力、 *** 作不当、未经许可拆卸等原因造成的故障损坏不在保修之列。S259TM电力高压设备温度在线监测系统产品说明书20124V30珠海施诺电力科技有限公司zhuhaiSinoScienceandTechnologyofElectricpowerCo,LTD地址:珠海市唐家湾大学路101号清华科技园力合大厦B座4层电话:0756-322910733379003337901传真:0756-3229732邮编:519015


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13468052.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-13
下一篇 2023-08-13

发表评论

登录后才能评论

评论列表(0条)

保存