摘要:物联网作为一种新的网络形式,相关理论研究和实践应用正在探索过程中。
本文介绍了物联网的概念,给出了基于智能物体层、数据传输层、信息关联层、应用服务层的物联网四层体系架构,最后探讨了物联网在实现过程中所面临的问题和挑战。
关键词:物联网,RFID
一、概念
物联网(Inter of Things)这个概念最早由麻省理工的Auto-ID中心在1999年提出,其基本想法是将RFID和其他传感器相互连接,形成RFID架构的分布式网络。
欧洲委员会[1]提出“物联网是未来因特网的综合部分之一,可以被定义为一个动态的全球网络基础。
基于标准的和互 *** 作的通信协议,无论物理的还是虚拟的“物”均有身份、物理属性和虚拟特质,具备自配置能力且使用智能接口,可以无缝地集成到信息网络中去。”
本文认为,物联网实质上是将真实世界映射到虚拟世界的过程:真实世界中的事物,通过传感器采集一定的数据,在虚拟世界中形成与之对应的事物。
“相关物体可能在虚拟电子空间中被创造出来,源于物理物体空间,且与物理空间的物体有关联。”[2]传感器采集到数据的详细程度,将影响到该事物在虚拟世界中的抽象程度。
在虚拟世界中,对该事物最简单也最重要的描述是物体提供了一个ID用于识别(如使用RFID标签),最详细的描述则是真实世界中该事物的所有属性和状态均可在虚拟世界中被观察到。
进一步的,在虚拟世界中对该物体做出控制,则可通过物联网改变真实世界中该物体的状态。
对于一个真实的事物,其所需的各种应用与 *** 作,只需在虚拟世界中对与之对应的虚拟事物进行应用和 *** 作,即达到目的。
这样将会对世界带来巨大的改变:实地实时监测和控制一个事物的成本是高昂的,通过物联网,所有事物都将在虚拟世界中被找到,以较低的成本被监测和控制,从而实现4A(anytime, any place, anyone, anything)[3]连接。
虚拟世界提供了对所有事物的实时追踪的可能,所有的信息都不是孤立的,这将为各种海量运算和分析提供了最基础和最重要的信息源。
真实世界存在于某一时刻,而当物联网发展到能将真实世界中的所有事物都映射到虚拟世界中时,无数个某一时刻的世界汇集起来,在虚拟世界中将形成一个可以追溯的历史,如同过去以纸质保存历史事件的发生,将来将以电子数据对所有事物进行全息描述的形式存储世界的历史。
二、体系架构
目前, 物联网还没有一个广泛认同的体系结构,最具代表性的物联网架构是欧美支持的EPCglobal和日本的UID物联网系统。
EPC系统由EPC 编码体系、射频识别系统和信息网络系统3 部分组成。
UID 技术体系架构由泛在识别码(uCode)、泛在通信器、信息系统服务器、和ucode 解析服务器等4部分构成。
EPCglobal 和UID上只是RFID 标准化的团体,离全面的“物联网”体系架构相去甚远。
美国的IBM公司在2008年提出“智慧的地球”这一与物联网概念相近的概念,并提出通过INSTRUMENTED,INTERCONNECTED和INTELLIGENT这三个层面来实现智慧地球。
在文献基础上,本文提出了物联网体系架构。
1、智能物体层:通过传感器捕获和测量物体相关数据,实现对物理世界的感知。
同时具备局部的互动性,需要一定的存储和计算能力。
2、数据传输层:以有线或无线的方式实现无缝、透明、安全的接入,提供并实施编码、认知、鉴权、计费等管理。
3、信息关联层:通过云计算实施对海量数据的存储和管理、数据处理与融合,屏蔽其异质性与复杂性,形成一个与真实世界对应的虚拟世界。
4、应用服务层:从虚拟世界中提取信息,提供丰富的面向服务的应用。
如智能交通、智能电网、智能医疗等等。
需要指出的是,数据由底部的传感器通过网络到达应用服务层面,而实际上,在服务应用层面,各个中心、用户可以反向的通过网络由执行器对物体进行控制。
在该体系结构中,感知层面的各种传感器、执行器都是具体的,随着技术的发展会不断升级,新设备不断引入物联网。
而服务应用层的各种需求也是不断提出的,并不是一层不变的。
若是每个具体的服务应用和传感设备都形成一个独立的网络,最后可能形成许多套特殊的网络,这不利于推广和不便于维护。
因此这需要物联网的网络层有一定前瞻性,物体设备层可以变化,服务应用层可以变化,但它们都是通过一个普适的网络进行连接,这个网络可以在一定的时间内保持稳定。
三、面临的挑战
1、统一标准
物联网其实就是利用物体上的传感器和嵌入式芯片,将物质的信息传递出去或接收进来,通过传感网络实现本地处理,并联入到互联网中去。
由于涉及到不同的传感网络之间的信息解读,所以必需有一套统一的技术协议与标准,而且主要是集中在互联上,而不是传感器本身的技术协议。
现在很多所谓的物联网标准,实际上还是将物联网作为一种独立的工业网络来看待的具体技术标准,而应对互联需要的技术协议,才是真正实现物联网的关键。
2、安全、隐私
在物联网中所有“事物”都连接到全球网络,彼此间相互通信,这也带来了新的安全和隐私问题,例如可信度,认证,以及事物所感知或交换到的数据的融合。
人和事物的隐私应该得到有效保障,以防止未授权的识别和攻击。
安全与隐私这个问题,是人类社会的问题,不论是物联网还是其他技术,都是面临这两个问题。
因此,不仅要从物联网内部的技术上做出一定的控制,而且要从外部的法规环境上作出一定的司法解释和制度完善。
参考文献
1 mission, IDE, Inter of things Strategic Research Roadmap 2009
2 CASAGRAS Final Report: RFID and the inclusive model for the Inter of things 2010
3 ITU Inter Reports 2005: The Inter of Things 2005, ITU
物联网就是物物相连的互联网。
这有两层意思:
其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
物联网的应用:
1、智能交通。物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力。
2、智能家居。智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温。
3、公共安全。近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,网可以实时监测环境的不安全性,情况提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
因特网,英特网在发音上略有差异,实际上因特网,英特网就是现在通常所说的互联网,这只是名称不同而已,互联网在飞速发展,每天所说的"上网",应该就是指登录互联网,物联网也可以理解为在一个大型的超级市场里{超市}又多了一个柜台,物联网处于互联网之中简述Inter,物联网,云端计算之间的区别以及联络 因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。
人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。
云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。
物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。
随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。
基于大资料与物联网,云端计算之间的关系
物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。
因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。
云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。
1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。
所有的这些技术融合到一起,形成了物联网,将世界上的物体从感官上和智能上连接到一起。事实上,借助集成化信息处理的帮助,工业产品和日常物件将会获得智能化的特征和性能。它们还满足远程查询的电子识别需要,并能通过传感器探测周围物理特性的变化。如此一来,甚至于像灰尘这样的微粒都能被标记,并连接入网。这样的发展将使当期的静态事物变成未来的动态物体,在我们的环境中处处嵌入智能,刺激更多创新产品和服务的诞生。
但是在开放式的物联网环境中,由于海量业务数据产生了巨大压力,终端增长迅速,终端关联的数据增加,应用自定义数据迅速增加,传统的硬件环境难以支撑。同时,运营商长期积累了大量闲置的计算能力和存储能力,有必要加以利用,这也是绿色环保的需求。另外,还有大规模业务主流凸显性能瓶颈,随着业务发展,大量自定义业务同时运行,对平台造成性能压力,服务器CPU处理能力以及内存容量均难以满足不断增长的自定义业务的运行。因此,云计算和物联网是一体的,物联网是延伸到物质世界的一个触角,与计算则是负责对物联网收集到的信息进行处理、管理、决策的后台计算处理平台,两者需要进行有机的结合。
当世界进入物联网的世界后,人类的日常生活将会发生天翻地覆的变化,它会将新一代IT技术充分运用在各行各业之中,具体地说,就是把传感器嵌入和装备到各种物体中,然后将“物联网”与现有的因特网整合起来,实现人类社会与物理系统的整合;在这个整合的网络当中,存在能力超级强大的中心计算机群,能够和整合网络内的人员、机器、设备和基础设施进行实时的管理和控制;在此基础上,人类可以更加精细和动态的方式管理生产和生活,达到“智慧”状态,提高资源利用率和生产力水平,改善人与自然的关系。因特网是最典型的基于物联网(IoT)网络,它使用了许多不同的技术来连接物理设备,如智能手机、智能家居设备、汽车和医疗设备等,使它们能够进行互联互通,实现信息共享和服务交互。通过这种网络,物联网设备可以在网络之间共享数据,从而实现智能化和自动化。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)