物联网 *** 作系统属于信息采集吗?

物联网 *** 作系统属于信息采集吗?,第1张

物联网技术涵盖感知层、网络层、平台层和应用层四个部分。

感知层的主要功能就是采集物理世界的数据,其是人类世界跟物理世界进行交流的关键桥梁。比如在智能喝水领域会采用一种流量传感器,只要用户喝水,流量传感器就会立即采集到本次的喝水量是多少,再比如小区的门禁卡,先将用户信息录入中央处理系统,然后用户每次进门的时候直接刷卡就行。(了解更多智慧人脸识别解决方案,欢迎咨询 汉玛智慧)

网络层主要功能就是传输信息,将感知层获得的数据传送至指定目的地。物联网中的“网”字其实包含了2个部分:接入网络、互联网。以前的互联网只是打通了人与人之间的信息交互,但是没有打通人与物或物与物之间的交互,因为物本身不具有联网能力。后来发展出将物连接入网的技术,我们称其为设备接入网,通过这一网络可以将物与互联网打通,实现人与物和物与物之间的信息交互,大大增加了信息互通的边界,更有利于通过大数据、云计算、AI智能等先进技术的应用来增加物理和人类世界的丰富度。

平台层可为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑数据上报至云端,向上提供云端API,服务端通过调用云端API将指令下发至设备端,实现远程控制。物联网平台主要包含设备接入、设备管理、安全管理、消息通信、监控运维以及数据应用等。

应用层是物联网的最终目的,其主要是将设备端收集来的数据进行处理,从而给不同的行业提供智能服务。目前物联网涉及的行业众多,比如电力、物流、环保、农业、工业、城市管理、家居生活等,但本质上采用的物联网服务类型主要包括物流监控、污染监控、智能交通、智能家居、手机钱包、高速公路不停车收费、远程抄表、智能检索等。

勾勒物联网与大数据的数据中心路线图
从数据中心的角度看,物联网和大数据项目几乎总是强调网络和存储基础设施。规划人员在组织内开始实施这种大规模数据密集的项目之前,需要仔细地评估基础设施的需求。
传统的商业智能项目建立在不同于大数据项目的需求和理解的基础上。典型商业智能从清晰的想法开始尝试,必须经得起推敲,什么数据可用或必须收集来回答这些问题,需要上报何种结果,组织内谁需要这些结果。此类项目几十年来一直是企业级IT的基础。物联网(IoT)和大数据聚焦在不同的侧重点。他们会提问:如何提出正确的问题;问题是哪些,如何解决以更好地为客户服务,必须提供什么样的产品才能留住现有的客户,同时如何劝说新客户从公司购买产品和服务这通常能够说明,物联网和大数据项目各自需要不同的专业知识,不同级别的经验和不同种类的工具。因此,运营这样的项目对于IT团队会更加困难。在物联网和大数据领域迈出坚实的第一步当IT领域强大的新技术或新的方法获得了一定的动力,有人可能就会有采取一种急于求成的方法——有时候很少有人能理解怎样才能获得一次成功的初次实践。物联网和大数据显然属于这一类。这一认识可能诱导组织在一个非常令人失望或用处不大的数据上投入巨资。失败可能来自选择了不恰当的工具,没能正确配置支持系统的工具,缺乏必要的专业知识,或与错误的合作伙伴共事。一旦失败,许多决策者便将责任归咎于方法或技术。对于大数据的潜力,已经是毫无争议的议题,报告也同样鼓吹物联网,指出它将连接从我们的手机、我们的汽车到我们的家用电器等一切的一切。硬件、软件和专业服务的供应商已经加入进来,大家都想在由物联网这些技术方法将产生的潜在收益中分得一块大蛋糕。几乎所有的供应商,包括系统、存储、网络、 *** 作系统、数据管理工具和开发工具等领域的厂商都已经提出了与大数据有关的产品和服务集。这些同质化的厂商也开始提供从智能设备中进行数据转换和收集数据的方法。集成物联网与大数据在开始物联网和大数据项目之前,明智的领导者会慢下来,并评估什么是企业真正需要的东西。评估IT团队的能力和专长。现实地考虑什么事情可能会出错,从中可以汲取到哪些信息。组织通常设计大数据项目以确定哪些问题要问,而不是跟踪具体的,先前已知的需求。这意味着决策者和开发人员必须首先要确定的是,基于 *** 作的、机械的以及其他类型已经被收集的数据应该提出何种问题,因为很可能没有人会花时间来分析数据。物联网项目很可能成为大数据实施所需的数据来源。物联网和大数据两者都通常依赖的NoSQL数据库,反过来,依靠系统执行数据管理软件集群,网络容量的广泛使用和共享内存或复杂的数据缓存技术,将加快现有存储介质的应用。物联网项目很可能对数据中心网络和存储产生巨大的影响。大多数组织都拥有丰富的原始数据,数据来自于 *** 作系统、数据库管理产品、应用框架、应用程序和服务设备的销售点或点的自动收集信息。组织可以使用数据来获得更加清晰的,整体感知程序、产品和培训的优势和劣势。将物联网混合加入到大数据中,为公司提供进一步了解其客户提供帮助。分析这一巨大的和不断增长的数据,可以往往为企业提供线索,以更好地把握客户的需求。企业也可以了解到它哪些问题所对应的信息没有被正确地收集,并寻求自己的独特的问题解决方法。拒绝那种瞄准-射击-命中的速成方法,这点在物联网项目中尤其重要。很少有组织有这足够的胆量推迟项目,因为这会刺激或冒犯某个客户。IT团队必须明确地了解自己的目的,团队所使用的工具,选择的供应商将是这一尝试的重要部分。只有这样一个团队才能捕捉和驯服大数据“野兽”或促成将物联网有效的实践。这就需要一个组织来正确配置和提供其基础设施,该过程涉及部署必要的处理能力、内存、存储和网络容量,还有适当的软件开发,持续的运营、监控,还有管理和安全。上述这些元素中的每一个必须精心地选择和配置。然而,该过程并非一定会成为越做越好的案例。与物联网或其他客户面临的项目,这将是明智的考虑客户将如何反应,在网上与业务的所有时间。性能,隐私和功能功能都非常重要。物联网和大数据开发工具每一套大数据的方法都有它自己的一系列开发及部署工具。同样的道理也适用于物联网平台。要建立最有效的平台,公司的开发人员必须理解这些工具,知道如何使用它们,并清楚如何建立一套最优的系统。在大数据项目上工作的人可能会选择使用与物联网开发团队所不同的工具。然而,两个团队之间必须保持彼此沟通。物联网团队需要收集适当数据来支持大数据的实施,对于刚刚接触这些类型的新技术的企业,选择较小的项目起步是很明智的,之后伴随着团队开发的经验和专业知识的提升,再涉足大型项目。组织必须按照所评估的那样对待大数据项目,这需要IT管理团队的卓有远见的运营活动。选择适合于企业管理框架的监控和管理工具非常重要,它们可以提供易于理解和有用的数据。物联网项目,由于它直接面对客户,需要轻量、监测响应和管理。如果这些工具太重,顾客会抱怨贵公司对昂贵的数据计划的消耗太大。在信息收集和功能提供中间找到适当的平衡,整体性能和数据的来回发送容量会是棘手的问题。许多组织在大数据中找到真正的前景。物联网的最佳实践仍在不断涌现,所以标准咱不能广泛应用。然而,在这两种情况下,结合技术专长正确地选择和配置组件是一个成功的项目的关键要素。适当的配置选择,选择系统驱动,支持的 *** 作系统以及系统、网络和存储配置部署。然而,通常最重要的因素是,在项目上找好合适的心态。在大数据的案例中,目标应该是了解提出何种问题才是正确的,而不是把项目看作是另外一个商业智能的倡议。在物联网的案例中,该项目必须能够提供有用的服务,以换取客户对收集数据的授权,以满足基于大数据的销售活动,支持和商业智能系统。

物联网的基本特征:

1、全面感知

全面感知即使用RFID、传感器、二维码等随时随地获取物体的信息。数据收集方法很多,完成数据收集多点化、多维化、网络化。并且从感知层面来讲,不只体现在对单一的现象或方针进行多方面的调查取得归纳的感知数据,也体现在对实际国际各种物理现象的遍及感知。

2、可靠传输

经过各种承载网络,包含互联网、电信网等公共网络,还包含电网和交通网等专用网络,建立起物联网内实体间的广泛互联,具体体现在各种物体经由多种接入形式完成异构互联,扑朔迷离,构成“网中网”的形状,将物体的信息实时精确地彼此传递。

3、智能处理与决策

使用云核算、含糊辨认和数据交融等各种智能核算技术,对海量数据和信息做处理、剖析和对物体施行智能化的 *** 控。首要体现在物联网中从感知到传输到决议计划使用的信息流,并终究为 *** 控供给支撑,也广泛体现出物联网中很多的物体和物体之间的相关和互动。

物联网概念最早源于RFID网络

1998年,美国麻省理工学院(MIT)Auto-ID中心创造性地提出了当时被称作EPC系统的“物联网”的构想,1999年该中心首先提出“物联网”的概念,提出将RFID与互联网结合,在物品编码、RFID技术和互联网的基础上实现在任何地点、任何时间、对任何物品进行标识和管理。

物联网面临的四大现代挑战

1 物联网的硬件设计

人们首先要从 社会 发展的角度来考虑物联网的发展。在以往,与互联网连接的设备的问题是硬件设计。

起初,笔记本电脑通过Wi-Fi连接到互联网,但由于缺乏相应的通信基础设施,人们无法在任何地方使用Wi-Fi,所以笔记本电脑也并不方便携带和使用。

在2007年苹果发布iPhone之前,连接到互联网的手机的用户体验通常非常糟糕。而目前iPhone和Android手机应用非常普遍,人们通常使用手机访问互联网。

与此同时,还推出了一些连接互联网的可穿戴设备,如智能手表和腕带,其功能包括帮助监测人们的 健康 状况。

最近,智能家电已经成为智能家居的重要组成部分。例如,智能电视成为最常见的设备。人们可以直接观看在线视频并上网冲浪。此外,更多智能家电将以智能冰箱、智能烤箱、智能洗衣机、智能加热器的形式进入人们的家中。

一开始,笔记本电脑和手机使用2G/ 3G网络。如今,Wi-Fi和4G是最常用的通信技术。当可穿戴设备连接手机时,由于其能源效率的原因,蓝牙技术是最佳选择。但是由于某些应用场景的限制,这些技术无法扩展。例如,智慧城市使用传感器的特性来收集数据并将其发送回服务器。这些传感器通常无法使用Wi-Fi。通常,传感器与服务器之间的距离很长,因此蓝牙技术无法在这样的应用中使用。

2低功耗远程通信

为此,行业厂商开发了一些低功耗和长距离通信技术,称为低功耗广域网。 LoRa是一种流行的无线电调制技术,它促进了许多应用,例如智能远程测量仪,但仍有很多工作要做。

物联网设备传统上是采用传感器来收集数据或控制器。当人工智能应用于这些设备时,这些设备将变得越来越智能。由于物联网设备没有足够的计算能力来处理收集到的数据,因此将它们发送回服务器。然而,目前它耗费了太多的通信能量,而物联网设备并不总是能够上网。

3 人工智能集成物联网

最近,学术界和工业界开始应用机器算法,而不是“云计算”。iPhone X中的Face ID就是一个很好的例子。实际上,直接在手机上运行这些人工智能算法并不容易,因为这些算法是为服务器或计算机设计的,而不是针对物联网设备的。因此,需要考虑资源受限的物联网设备的优化。因此,更智能的物联网应用将变得更加可用。

4物联网设备的安全

工程师的另一个任务是确保物联网设备的安全。由于计算资源受限,物联网设备容易受到网络攻击。与个人电脑不同,人们无法在其上安装任何防病毒软件,其方法也不高效。为了保护物联网设备,需要仔细设计替代的安全方法。而且,物联网设备也能收集敏感数据。

在未来一年中,与物联网相关的更多技术将会逐渐成熟并应用于人们的日常生活中,以提高生活质量,但这四个技术领域需要取得更多的进展。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13482590.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-15
下一篇 2023-08-15

发表评论

登录后才能评论

评论列表(0条)

保存