(1)业务受理、开通、计费功能
(2)信息采集、存储、计算、展示功能
(3)行业的灵活拓展应用模式
物联网平台的定义:
物联网平台是一个中间层,一方面位于物联网设备层和物联网网关(和数据)层之间,另一方面是应用。因此,物联网平台也被称为应用支撑平台/智能管理平台。
物联网平台的基本功能和优势:
物联网平台支持物联网设备和端点管理、连接和网络管理、数据管理、处理和分析、应用开发、安全、访问控制、监控、事件处理和接口/集成。
物联网平台有自己的根,需要管理、监控、存储、翻译、保护和分析物联网数据;启用应用程序;物联网设备管理;因为物联网缺乏标准和互 *** 作性、连接性和集成性;安全性、固件更新以及用户和访问管理;可视化并与应用程序、用户和开发人员联系。
物联网平台可以更快、更便宜、更好地构建物联网解决方案,实现物联网项目。它们的基本功能包括连接和网络管理、设备管理、数据采集、处理分析和可视化、应用支持、集成和存储。
随着更多物联网设备/资产、数据、相关技术、网络/连接解决方案的出现,以及基础设施和高效、可互 *** 作和安全连接的发展,物联网平台已经成为专业的物联网部署。
物联网平台已经成为物联网部署的重要组成部分,几种类型和供应商都有各自的侧重点和市场策略。此外,物联网平台的现实和市场非常复杂,因为物联网项目、应用和解决方案具有不同的架构、连接和管理设备的方式、管理和分析数据的可能性、构建应用的能力和利用的选项。对于任何特定环境下的任何给定物联网用例,物联网都是有意义的:例如:消费应用、企业物联网应用和工业物联网或工业40。
物联网云服务是物联网世界的核心,主要包括四个层次:感知层、传输层、平台服务层、应用服务层。其中,物联网云平台是物联网网络架构和产业链条中的关键枢纽。其向下接入分散的物联网传感层,汇集传感数据;向上则是面向应用服务提供商,提供应用开发的基础性平台和面向底层网络的统一数据接口,支持具体的基于传感数据的物联网应用。
此外,还可通过它实现对终端设备和资产的“管、控、营”一体化,并为各行各业提供通用的服务能力,如数据路由、数据处理与挖掘、仿真与优化、业务流程和应用整合、通信管理、应用开发、设备维护服务等。
物联网产业发展至今,行业应用需求逐步崛起,底层技术逐步成熟,因此发展完善的物联网云平台技术,从而刺激下游应用的部署,成为推动产业发展的关键。
不管是物联网、云计算还是大数据时代,都是我们信息时代的发展基石,那么它们到底是个什么东西呢?一起了解下吧!
当我们进入到互联网时代的时候,不管你是听一首歌,还是浏览一个网页,关于你的各种数据就已经开始存在着了,那么如何存储这些大数据?并且如何灵活的运算和分析这些数据?这都是大数据平台所要做的事情,提供一个媒介来看管这些数据,在大数据平台,开发者们或可以将写好的程序放在“云”里运行,或是使用“云”中提供的服务。
所以接下来,我们要讲的就是云平台,都说企业上云,这“云”到底是什么呢?其实,我们可以把云看做是一个容量无限大的仓库一样,这也是云计算不断发展下的产物,为企业提供一些建模,开发,集成,运行,管理等一系列的IT解决方案,在“云”上,可以实现资源的调动,存储等,以此来保障整个IT系统不崩盘,顺利的运行。
物联网是互联网发展成熟后的一个必然趋势,互联网的包括的范围还是非常的有限,但是物联网不同,它要把一台冰箱,甚至马路上的一个小灯泡都能通过物联网技术连接起来,赋予他们新的智能化的东西。可以这么说,万事万物都在物联网的“掌控”之中。
大数据 说的是一种移动互联网和物联网背景下的 应用场景 ,各种应用产生的巨量数据,需要处理和分析,挖掘有价值的信息, 侧重于海量数据的 存储、处理与分析 ,从海量数据中发现 价值 ,服务于生产和生活。
物联网 是把所有物品通过信息传感设备与互联网连接起来,进行 信息交换 ,即物物相息,以实现智能化识别和管理,物联网的发展目标是 实现万物互联 , 应用创新 是物联网发展的核心,智能手表/手环、无人驾驶、无人商店、智能工业、智慧城市等等都物联网的应用场景, 基于物联网延展出来的 边缘计算 已经开始兴起。
云平台 则是各种资源的 虚拟化、优化配置与管理 ,在此之上提供开箱即用的应用服务给用户,典型分为 IaaS、PaaS、SaaS 三种模式,其中IaaS、SaaS发展的比较快,IaaS方面的赛道已被头部玩家锁定。目前PaaS的发展也在快速发力, 中台概念的普及推动着PaaS的发展, 基于PaaS开发SaaS ,或者 SaaS附带高扩展能力的PaaS 都是典型的形态 。
云平台和物联网、大数据是密切相关 ,物联网提供海量数据采集、基本处理的抓手与通道,云平台提供虚拟基础环境、运行环境、开发环境、应用平台,大数据提供数据处理模型、计算、加工、分析以及更高级的趋势分析、智能预警等,我国工业2025、工业互联网发展对这三块需求都比较旺盛,前景一片光明。
数通畅联专注于企业IT架构、SOA综合集成、数据治理分析领域,感谢您的阅读与关注。
在信息化、互联网+时代,它们分属不同的技术研发方向领域。
数据处理分析决策领域,称发展由局部孤立数据到大数据;通信网络链接领域,称发展由互联网到物联网;应用软件技术服务领域,称发展由终端应用到云集约分布应用。显然,数字信息技术发展终将殊途同归。
物联网、大数据、云应用服务、人工智能、区块链,它们是紧密关联的,物联网生成大数据,对大数据的处理分析,需要集约多进程的分布式应用服务;基于大数据的综合决策,需要人工智能辅助;数据的真实性、安全性,需要区块链保障。
产业数字化转型,全部产业将升维到数字产业;再进行全数智产业集约优化生态闭环,则所有异构平台,必将集约融合为”物联网大数据云服务”平台,实现大一统。
在物联网系中,纲是智慧中国、智慧政府、智慧城市;节点是云平台,分布式应用服务、分布式存储、分布式记帐;目是连接万物的末梢(移动、固定)终端,目终端通过授权链接,可访问纲和节点服务。
首先,分属三个不同的行业,但都属于大平台级别。相互独立,却又相互交融;
其次,简单点理解大数据以内容为主,提练数据为当下或未来服务;物联网以物为主,万物互联为核心;云以存储/集中服务为主,民主集中制是特色。
但是这三者相互关联。物联网可以产生大数据,要用云平台;同时,大数据也对物联网和云平台的应用也有支撑作用。
最后,当这三者发展到均衡一定程度,人工智能化才能真正实现。
万物互联给人感觉庞大且有距离感。但其实,它离你并不遥远:街头密集的共享单车、越来越多的智能穿戴和智能家居……当物联网应用于生活的方方面面,包括移动医疗、工业物联网、智能零售、环境监测、资产跟踪等等,它将极大地方便我们的生活、提高工作效率
选择物联网平台是一项关键决策,会对企业产生多方面影响。这篇文章列出了帮您选择合适物联网平台的几个要点。
可扩展性
数据增长越多,处理起来就越困难,这需要立即处理。当公司能够处理大量数据时,机器学习算法可以帮助获得更好的商业智能,这反过来又可以帮助做出更好的决策。因此,可扩展性变得很重要。为了将机器学习算法应用于大量数据,您需要首先找到一个物联网供应商来帮助获取这些数据。因此,选择物联网供应商的决定变得至关重要。随着大量数据的出现,与硬件和数据安全相关的成本和风险也随之增加。如果您从一开始就没有连接数百万台设备,这并不重要,重要的是要确保您的物联网平台能够处理数据负载。
在寻找供应商时,您需要考虑平台的可扩展性和平台的最佳性能。可扩展的物联网平台允许您连接到数百万台设备,这些设备具有不同的技术要求,并在不危及质量和效率情况下使用数据提供洞察力。
协议支持
长期以来,M2M通信和工业自动化已经存在。借助数据驱动的运营洞察,物联网使工业自动化成为一个更好、更精确的领域。为了提供完整的自动化体验,物联网平台需要支持传统和新兴协议。此外,物联网平台还应该提供协议转换。基于SCADA的RTU和PLC仍有在现有平台上实现自动化的趋势。BACnet、Modbus和CANBUS的使用在通信设备中也很常见。
定价模式
平台提供商应该有透明的定价政策。当心那些提供特惠价格的供应商,当您注册时,他们会提高价格。
如果您选择订阅模式,则可以支付订阅定价的费用。如果您要销售硬件,那么您可以选择带有许可证的平台选项,以便将其包含在开发成本中。
云基础设施
寻找能够提供适合您当前IT环境的物联网平台供应商,并托管在本地。与单一方法相比,混合云方法已经证明是成功的。混合云的最佳之处在于它能提供良好的访问性,使用此选项的公司可以方便快捷地访问私有云和公共云。
结论
随着技术的进步,物联网将改进我们彼此的互动方式,以及全球经济的运行模式。要取得成功,需要一个可扩展的集成平台。物联网机器学习也有利于根据我们的需求塑造我们的环境。
在选择物联网平台时,需要向供应商提出您的需求和限制条件,这一重要步骤将有助于做出更有针对性的决策。
本文将介绍使用 Node-RED 连接到 MQTT 服务器,并对 MQTT 数据进行过滤和处理后再将其发送至 MQTT 服务器的完整 *** 作流程。读者可以快速了解如何使用 Node-RED 对 MQTT 数据进行简单的流处理。
Node-RED 无论是在你本地的电脑上,还是树莓派等设备,亦或是云端服务器,都可以快速安装和使用,下面将使用两种比较常见的安装方式:
使用 npm 进行全局安装:
使用 Docker 进行安装:
如果使用的是 npm 进行的全局安装,那么在提示安装成功后,只需要在全局运行 node-red 命令就可以立即启动 Node-RED。
无论是使用 Docker 还是 npm 在启动成功后,我们只需要打开浏览器,输入当前地址加 1880 端口号,即可打开 Node-RED 的浏览器编辑器页面,例如在本地运行的话,打开浏览器,输入 >
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)