硬件平台有哪些?

硬件平台有哪些?,第1张

问题一:软件平台和硬件平台分别有哪些? 软件平台有:触程的平台如:VisualStudio2005
办公平台: office
硬件平台 如: 主板,处理器,液晶屏等

问题二:请问什么是硬件平台? 硬件平台指的是软件运行的环境,每一种硬件平台都有自己的特性,每一贰软件都有唯一可以运行的硬件平台
XBOX是一种平台,只能运行专门为XBOX写的程序

问题三:目前市场上有哪些好的硬件供应商平台? 应该蛮多的,不过我觉得硬蛋供应链还是可以的,有5K+的项目,好像昨天搞了个芯火+活动,对接了5千万的订单。

问题四:电脑主要硬件有哪些? 中央处理器 ,俗称CPU
主板,要和CPU保持同样的平台
硬盘,数据保存
内存
显卡
声卡
网卡
外设包括 显示器 机箱电源 鼠标键盘 音箱 鼠标垫 鼠标夹 鼠标垫 摄像头 耳机 光驱
基本就这些了,如果楼主还有不理解的,可以继续问我。

问题五:一般我们说的硬件平台指的是什么? 在英特尔平台上更换了AMD显卡(HD4650)
XX平台指的是CPU
目前主流平台有英特尔和AMD,当然也有部分威盛和IBM以及其他平台。

问题六:智能硬件都有哪些产品? 主流智能硬件产品主要有以下分类:
1、智能家居
智能家居是以住宅作为为基础的 *** 作平台,并且综合我们的房屋建设、网络通信以及家电信息等通过高科技技术达到设备能够自动化管理。包括智能家电、智能影音、智能遮阳、智能灯光、智能清洁、智能恒温、智能门禁、智能监控、智能防盗等。智能家居的基础是物联网,核心在于一体化控制。目前智能家居的发展还处于各个品类独立发展的阶段。
2、智能电视
智能电视不仅仅实现我们一般电视的播放功能,还能通过互联网连接实现智能 *** 作的功能。例如可以自行下载应用程序、安装或者卸载各种软件等等。
3、智能手机
智能硬件之始,起于智能手机。
4、智能汽车
智能汽车其实就是在我们的普通汽车上安装了传感器、摄像以及执行器等一系列先进的装置。当我们使用时可以通过车载传感系统实现与人和车之间信息的交换,使汽车能够感知并且能够自行分析目前的汽车行驶情况,这替代了人的 *** 作,最新产品如谷歌无人驾驶汽车等。
5、智能穿戴设备
可穿戴设备涉猎广泛,有:智能眼镜、智能手表、智能手环、智能戒指、智能颈环、智能隔音耳塞、智能衬衫、智能运动鞋等等。
6、智能防丢设备
智能防丢设备是通过对软硬件进行整合,可以实现将我们的手机、自行车、钱包等物品实现相连的 *** 作,这样任何意见物品丢失都会提示给我们。如奥星澳蓝牙防丢器。
7、智能蓝牙耳机
现在有很多的手机会有蓝牙这个功能,因此蓝牙耳机势必会成为手机的选件。同时,随着蓝牙耳机可以连接到移动电话和音乐播放器,这将是蓝牙应用的一个新的突破。
8、智能医疗设备
代表产品智能血压计/血糖仪、智能假肢等。
随着科技的发展,肯定还会有很多的智能硬件的出现,比如游戏类、空气净化类产品等。希望上述内容能对你有所帮助!

问题七:硬件开源平台有哪些呢? 那多了去了。
机智云、ablecloud、很多。

问题八:开源硬件平台有哪些 嗯,硬件平台开源的话,更多的是指软件方面吧,比如很常见的LAMP组合哦,这个组合是指Linux+Apache+Mysql+PHP,实际上我也不是懂的很多啦,只是学过一点对于大神们来讲简单到搞笑的东西

问题九:谁有硬件的经典网站,越多越好 电脑硬件-电脑硬件报价-硬件测试-硬件知识-天极网电脑DIY硬件频道
天极网电脑DIY硬件频道:提供电脑硬件报价,电脑硬件行情,电脑硬件导购,电脑硬件知识,硬件测试,硬件维护,硬件论坛,电脑DIY装机等信息,天极YESKY|全球中文IT第一门户
diyyesky/
太平洋电脑网_中国第一专业IT门户网站
提供电脑产品介绍、价格信息、企业名录及电脑知识和新闻。
pconline/
硬件首页_科技时代_新浪网
数码首页手机数码相机/DV硬件笔记本台式机MP3/MP4家电下载软件学园摄影 硬件首页CPU内存硬盘显卡主板光存储机箱 电源五大新奇硬件盘点 随着科技的进步,显卡在用途及使用的方法上已经发生了很大的变化,一些新颖产品可能连发烧…… HD4600
techsina/hardware/
52硬件-专业的数字硬件互动媒体-52hardware
报道及时的硬件行情,业界动态,各种硬件产品,性能评测。
52hardware
电脑之家 PChome | 科技引领生活
介绍计算机硬件、软件及网络、游戏资讯。
pchome/
硬件频道-搜狐数码
・18日硬件:5000+跌破400 1TB硬盘竟不足900(09/18) ・17日硬件:英特尔暴跌240 1TB硬盘将破900(09/17) ・16日硬件:节后三大件较平稳 威刚2GB破200(09/16) ・感受性能的魅力 AMD四核台式机推荐(09/19) ・巅峰降价战役!本月十款
digiitsohu/diyshtml
硬件中心 | 电脑之家- PChome 个性造就非凡硬件
商情,评测,游戏,技巧,新闻,报价, 软件下载,硬件, 数码,摄影。
hardwarepchome/
电脑软硬件应用网-电脑教程-电脑学习-电脑维修-中国计算机教学网
提供电脑教程、软硬件应用、办公自动化、电脑问答等栏目。
45it/

问题十:嵌入式硬件平台有哪些 不太明白你的意思。这个硬件平台很多的,你可以在linux 的kernel中得到答案!

Banana Pi开源社区的硬件技术,与软件系统慢慢完善。现在已经开发了近60种开源硬件系列产品,并有200多种配件,形成了物联网应用的全系列硬件系列,包括ARM主控,MCU主控,物联网标准协议(Zigbee,Z-wave,RoLA,NB-IoT,Wifi,蓝牙,3G/4G/5G)采用Banana Pi系列硬件,支持了数百种传感器。并且系列硬件上,由于全世界开发者的支持,积累了大量的软件代码,文档等技术资料,在全球开发者的支持下,所有的硬件平台互联互通,开发者完全可以以banana Pi系列开发板,完成所有的IoT物联网应用开发,技术验证与产品原型,并且所有的软件都是基于开源的。这样,BPI开源社区完成了硬件与软件的物联网技术整体解决方案技术积累。
你可以用来做软硬件学习平台,DIY各种创意产品,物联网产品。

简述Inter,物联网,云端计算之间的区别以及联络

因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。

云端计算,物联网,人之智慧技术之间的联络, 人工智慧云端计算物联网三者之间的联络

人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。

日日月月科技云端计算和物联网之间的区别与联络是什么?

云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。

如何认识Inter与物联网、云端计算、三网融合之间的关系

物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。

云端计算大资料物联网之间的区别与联络 2250字左右我写论文

随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

基于大资料与物联网,云端计算之间的关系

物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。

因特网与物联网,云端计算,三网融合之间的关系

因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。

论述网格计算、云端计算、按需计算之间的联络与区别

云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。

详细阐述大资料,云端计算和物联网三者之前的区别和联络

1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。

———一周看点———

燧原 科技 发布第二代人工智能推理加速卡“云燧i20”

近日,燧原 科技 发布第二代云端人工智能推理加速卡“云燧i20”,据悉,作为全新一代云端AI推理加速产品,云燧i20拥有迄今为止业内最大的AI加速卡存储带宽,高达819 GB/s,远超行业同类产品水平;单精度FP32峰值算力达到32 TFLOPS,单精度张量TF32峰值算力达到128 TFLOPS,整型INT8峰值算力达到256 TOPS。对比第一代推理产品,云燧i20将浮点算力提升到18倍,整型算力提升到36倍。

微评:云燧i20也是继今年7月发布云端人工智能训练加速卡“云燧T20”之后,燧原 科技 又推出的全新一代针对云端推理场景的AI加速产品。云燧i20的特色在于超大带宽推理加速卡,兼具高吞吐、低延时特性,这在以、视频内容分析为主的人工智能技术应用的场景之下,数据带宽需求也越来越高,兼顾高带宽和低延迟变得至关重要。

安防类精密线缆连接组件龙头凯旺 科技 拟登陆创业板

12月3日深交所披露,中国证券监督管理委员会批复同意凯旺 科技 首次公开发行股票注册。凯旺 科技 主营业务为电子精密线缆连接组件的研发、生产和销售,目前公司产品主要应用于安防设备和通讯设备等领域,其中,安防类精密线缆连接组件产品,占到公司销售份额的9367%。

微评:根据相关市场调研数据显示,凯旺 科技 安防类精密线缆连接组件占国内安防设备电子精密线缆连接组件834%市场份额。无论是在安防工程,还是在安防产品中,安防连接器及精密组件都扮演着重要角色,在数据、图像以及其他信息的传输中都发挥着重要作用。凯旺 科技 的即将上市,也有望无疑将受益于安防行业未来整体市场空间增量。

端到端AI平台企业依瞳 科技 完成PreA+轮融资

端到端人工智能平台供应商依瞳 科技 宣布完成千万级人民币 PreA+ 轮融资,依瞳 科技 成立于 2019年年底,主要基于自研人工智能(AI)端到端平台,为工业制造、自动驾驶、电力能源、超算中心等行业提供机器学习和深度学习一站式 AI 服务,此轮资金将主要用于新产品的研发和市场拓展,进一步支持依瞳人工智能平台的 1+N 平台战略。

微评:和依图 科技 一字之隔,也同属AI企业,不过依瞳 科技 的主打的是AI平台业务,主要提供包括数据源管理、数据标注、数据集存储、数据预处理、模型训练优化、推理部署的AI算法训练及算力资源服务。其面向的业务领域也主要集中在工业制造、超算中心、自动驾驶、电力能源等B端行业。伴随着AI的日趋普及应用,AI平台将成为助推AI普惠应用的核心桥梁,在整个AI产业生态中扮演着重要角色。

殷创 科技 完成超亿元A轮融资 专注机器视觉传感产品

殷创 科技 11月30日发布消息表示,公司已于近日完成了超过1亿元A轮融资。本轮融资由盈科投资和元创资本领投、安信证券战略投资,融资资金将用于加强殷创 科技 在视觉传感领域已有的的各类产品线,增强欧美市场技术支持与商务推广,进一步完善车载产品各项生产体系与能力。

微评:自动驾驶、智能 汽车 等概念的火爆,也带动智能驾驶整条产业链备受关注。据悉,这家专注于辅助安全与无人驾驶机器视觉传感产品研发及制造的 科技 企业是英伟达指定图像传感设备供应商,在风口之上,加之有核心技术能力加持,殷创 科技 这家企业的发展潜力充满想象。

鹏博士与旷视 科技 合作共建鹏云AIoT平台

12月7日,鹏博士与旷视 科技 签署战略合作协议。双方将以物联网作为人工智能落地载体,合作共建鹏云AIoT平台,并在推动AI数字化生态、Brain++开源生态建设、社区和楼宇空间的AIoT智能化、拓展算法+软件+终端的整合解决方案等方面展开深入合作。

微评:AI产业进入“深水期”,各界对人工智能未来的发展路径抱有更多疑问和期待。产学研用企业之间的合作,对AI在行业领域的工程化落地和技术商业化都有着很大的促进作用,企业之间也可最终实现规模经济效益。

—— 微语录集锦 ——

CMOS 图像传感器的第一大发展方向是像素点数量不断增加,像素尺寸不断缩小,分辨率以及清晰度持续提升,第二大方向则是在提升分辨率的前提下,整合优化 CMOS 图像传感器在不同场景下的整体成像的系统性能力将变得至关重要;与此同时,堆栈式 CMOS 技术应用将逐步铺开,无论是安防、机器视觉或 汽车 电子领域,伴随着AI视频融合应用的趋势,尝试将AI技术能力和CIS工艺技术结合也成为一种趋势。

——思特威副总经理欧阳坚

随着超高清数字视频技术的发展,其在4K、8K、VR、流媒体视频等领域的应用越来越广泛,从技术的角度看,对传统策略的改进已经无法满足编码性能需求,基于人工智能神经网络算法、自适应全局优化策略、将编码与传输结合实现大跨度编码效率提升备受关注。

——中国信息通信研究院知识产权中心工程师徐丹

—— 本周热点原创文章一览——

AI定义ISP 开拓不同寻常的AI芯片创新之路

在端侧AI需求增加的同时,如何在成本和功耗完全可控的条件下,将AI能力达到极致,成为智能芯片行业共同的课题。AI定义ISP 开拓不同寻常的AI芯片创新之路 - 安防知识网 - a&s传媒

智能化浪潮下,CMOS图像传感器将如何升级迭代

伴随着各大细分行业市场的智能化升级,CMOS图像传感器也迎来了持续性的产品迭代和性能升级,在成像技术、制造工艺、适用场景等方面不断实现新的创新和突破。智能化浪潮下,CMOS图像传感器将如何升级迭代 - 安防知识网 - a&s传媒

     思极有容时序数据库正是普华公司面对这一高速增长的物联网大数据市场和技术挑战推出的创新性的大数据处理产品,它不依赖任何第三方软件,也不是优化或包装了一个开源的数据库或流式计算产品,而是在吸取众多传统关系型数据库、NoSQL数据库、流式计算引擎、消息队列等软件的优点之后自主开发的产品,在时序空间大数据处理上,有着自己独到的优势。

·        10倍以上的性能提升:定义了创新的数据存储结构,单核每秒就能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快了十倍以上。

·        硬件或云服务成本降至1/5:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10。

·        全栈时序数据处理引擎:将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成Kafka/Redis/HBase/HDFS等软件,大幅降低应用开发和维护的复杂度成本。

·        强大的分析功能:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。临时查询可通过Shell, Python, R, Matlab随时进行。

·        与第三方工具无缝连接:不用一行代码,即可与Telegraf, Grafana, Matlab, R等工具集成。后续将支持MQTT, OPC等工具, 与BI工具也能够无缝连接。

·        零运维成本、零学习成本:安装、集群一秒搞定,无需分库分表,实时备份。支持标准SQL语句,支持JDBC, RESTful连接, 支持Python/Java/C/C++/Go等开发语言, 与MySQL相似,零学习成本。

采用思极有容时序数据库,可将典型的物联网、车联网、工业互联网大数据平台的整体成本降至现有的1/5。同样的硬件资源,思极有容时序数据库能将系统处理能力和容量增加五倍以上。

同时,相比HBase等数据库,使用普华思极有容时序数据库来存储有以下优势:

1 存储空间大幅节省,估计不到HBase的1/10

2 服务器资源大幅节省,估计不到1/5

3 查询速度提高至少10倍

4 提供异地容灾备份方案

5 支持通过标准SQL进行即席查询

6 数据超过保留时长,自动删除

7 零管理,安装、部署、维护极其简单,一键搞定


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13496097.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-18
下一篇 2023-08-18

发表评论

登录后才能评论

评论列表(0条)

保存