通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。基于EPC和RFID技术的物联网在现代物流领域的应用 物联网又称传感网,英文名称叫“Internet of Things”,简称 IOT。物联网的概念于 1999 年在美国召开的移动计算机和网络国际会议上首次被提出, 2005 年在突尼斯举行的信息社会世界峰会上,国际电信联盟( ITU)发布了《ITU互联网报告 2005:物联网》的报告,正式提出了物联网的概念。物联网是在计算机互联网基础上利用射频识别(RFID)技术、无线通信技术、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监测和管理的一种网络。 在这个网络中世界上所有的物体从轮胎到牙刷、从房屋到纸巾都可以通过因特网主动进行信息交换。 物联网的问世,打破了传统思维。过去一直将机场、公路、建筑物等物理基础设施与数据中心、个人电脑、宽带等 IT 基础设施分开。而在物联网时代,所有的物品、电缆、芯片、宽带将整合为统一的基础设施,世界就在物联网上开展各种活动。 物联网应用广泛,遍及物流仓储、智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康等多个领域。但是,受技术水平和使用成本等因素的制约,物联网的应用在短期内还难以一下子在各个领域全面推广。而在更加追求效率及成本控制的物流行业,有望率先在这一新领域进行尝试。物联网与现代物流有着天然紧密的联系,其关键技术诸如物体标识及标识追踪、无线定位等新型信息技术应用,能够有效实现物流的智能调度管理、整合物流核心业务流程,加强物流管理的合理化,降低物流消耗,从而降低物流成本,减少流通费用,增加利润。 物联网借助互联网、RFID 等无线数据通信等技术,实现了单个商品的识别与跟踪。基于这些特性,将其应用到物流的各个环节,保证商品的生产、运输、仓储、销售及消费全过程的安全和时效。本文就物联网在现代物流各个环节的应用进行探讨,并对物联网在国内外物流的应用现状进行了概述。 1 物联网在物流各个环节的应用分析 物流是指物品从供应地向接收地的实体流动过程。当前的物流过程存在物流信息不对称、得不到及时的信息等弊端,难以实现及时的调节和协同。随着全球经济一体化进程的推进,调度、管理和平衡供应链的各环节(跨区、跨国)之间的资源变得日益迫切,以产品电子代码( EPC 码)和 RFID 为核心在互联网之上构造“物联网”,将在全球范围从根本上改变对产品生产、运输、仓储、销售各环节物品流动监控和动态协调的管理水平。 11 物流生产和运输领域 基于物联网的支持,电子标签承载的信息可以实时获取,从而清楚地了解到产品的具体位置,进行自动跟踪。对制造商而言,原材料供应管理和产品销售管理是其管理的核心,物联网的应用使得产品的动态跟踪运送和信息的获取更加方便,对不合格的产品及时召回,降低产品退货率,提高了自己的服务水平,同时也提高了
消费者对产品的信赖度。另外,制造商与消费者信息交流的增进使其对市场需求做出更快的响应,在市场信息的捕捉方面就夺得了先机,从而有计划地组织生产,调配内部员工和生产资料,降低甚至避免因牛鞭效应带来的投资风险。对运输商而言,通过电子产品代码EPC自动获取数据,进行货物分类,降低取货、送货成本。并且,EPC 电子标签中编码的唯一性和仿造的难度可以用来鉴别货物真伪。由于其读取范围较广,则可实现自动通关和运输路线的追踪,从而保证了产品在运输途中的安全。即使在运输途中出现问题,也可以准确地定位,做出及时的补救,使损失尽可能降到最低。这就大大提高了运输商送货的可靠性和效率,提高了服务质量。此外,运输商通过EPC可以提供新信息增值服务,从而提高收益率,维护其资产安全。 12 物流仓储领域 出入库产品信息的采集因为物联网技术的运用,而嵌入相应的数据库,经过数据处理,实现对产品的拣选、分类堆码和管理。若仓储空间设置相应的货物进出自动扫描纪录,则可防止货物的盗窃或因 *** 作人员疏忽引起的物品流失,从而提高库存的安全管理水平。现今,它已经广泛使用于货物和库存的盘点及自动存取货物等方面。 13 销售管理领域 物联网系统具有快速的信息传递能力,能够及时获取缺货信息,并将其传递到卖场的仓库管理系统,经信息汇总传递给上一级分销商或制造商。及时准确的信息传递,有利于上游供应商合理安排生产计划,降低运营风险。在货物调配环节,RFID 技术的支持大大提高了货物拣选、配送及分发的速度,还在此过程中实时监督货物流向,保障其准时准点到达,实现了销售环节的畅通。对零售商而言,实施 EPC 保证了合理的货物仓储数量,从而提高定单供货率,降低脱销的可能性和库存积压的风险。由于自动结算速度的大幅提高,卖场就可以降低最小安全存货量,增加流动资金。由于可以实现单品识别,每个产品都具有特殊代表性,他们在货架上的具体位置、所处状态,可通过信息阅读随时传递至互联网,在信息处理之后反馈给管理人员,可以有效防盗,避免销售损失。 14 商品消费领域 物联网的出现使得个性化购买、排队等候时间缩短变为现实。消费者随时掌握所购买产品及其厂商的相关信息,对有质量问题的产品进行责任追溯。事实上,由于产品在生产之初直至消费者手中的整个过程都经由实时的质量和数量追踪并依据情况做出补救,到消费者手中的残次产品几乎为零。这样,即保证消费者购买到满意商品,还可以防止残次产品因不及时有效处理而对周围环境带来威胁。特别是有毒有害的危险品,随意丢弃将可能造成严重的环境污染,酿成巨大的损失。
——更多本行业研究分析详见前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》。
行业进入快速发展期
物联网最早于20世纪90年代被提及并确认概念,在1995年至2005年间经历了萌芽期。2005年,国际电信联盟对物联网的概念进行了拓展,物联网行业进入初步发展期。2009年,中国、欧盟、美国对于物联网都提出国家战略层面的行动计划,全球物联网行业发展进入快速发展阶段。
全球物联网设备数量高速增长
根据全球移动通信系统协会(GSMA)统计数据显示,2010-2020年全球物联网设备数量高速增长,复合增长率达19%;2020年,全球物联网设备连接数量高达126亿个。“万物物联”成为全球网络未来发展的重要方向,据GSMA预测,2025年全球物联网设备(包括蜂窝及非蜂窝)联网数量将达到约246亿个。万物互联成为全球网络未来发展的重要方向。
全球物联网市场规模逐年增长
整体来看,物联网是世界信息产业第三次浪潮。当前,全球物物联网核心技术持续发展,标准体系加快构建,产业体系处于建立和完善过程中。未来几年,全球物联网市场规模将出现快速增长。IDC数据显示,2020年全球物联网市场规模约达136万亿美元。
智慧物流发展现状
智慧物流行业发展随着信息技术和智能制造的创新提升,将经历基础期、导入期、成长期和成熟期四个阶段。其中基础期以RFID技术,GPS技术等技术推广为基础,旨在建立基于RFID的货物可追溯系统,导入期将在无线传感技术上进一步突破,成长期将实现物联网的全面运作,成熟期将将形成完全智慧的物流运作体系。目前,我国智慧物流行业发展处于基础期到导入期的过渡阶段,未来有较大的发展空间。
科技创新引发资本聚焦
随着人力成本不断上升和对作业效率的需求不断加大,物流行业技术革新步伐愈发加快,智慧物流发展逐渐引起企业的重视。智慧物流在具体场景中应用加快,尤其是运输、分拣、仓储、系统平台等领域的物流科技产品在具体场景中纷纷落地实现应用,基于5G、IoT、AR、无人驾驶等技术应用,近几年由企业主导的物流科技亮点频现,G7、京东、顺丰、胜斐迩等国内外多家企业发布新型技术或产品,技术革新助力市场竞争进一步加剧。
从行业融资领域上看,2019年,智慧物流、同城配送、合同物流、快递物流等领域是最被中国国内资本市场认可的战场,且智慧物流领域最热门,投融资事件占比达到16%,智慧物流引起资本聚焦。
企业经营状况良好
从行业代表性上市企业毛利率来看,2016-2020年上半年,智慧物流市场毛利率呈现波动态势,但整体保持在15%以上较高水平。2020年上半年,受到疫情影响企业毛利率有所下滑,但仍在19%以上,反映出企业盈利能力较好,智慧物流行业发展前景可观。
从行业代表性上市企业毛利率来看,资产负债率来看,2016-2020年上半年行业代表企业的资产负债率,除顺达智能外,整体波动上升。2020年上半年,除今天国际资产负债率大幅增加至60%以上外,其余保持在20%-60%之间,资产负债率处于合理水平,行业整体的长期偿债能力较好,资金杠杆利用相对合理。
综合来看,我国智慧物流行业企业运营效益较好,行业发展前景可观。
以上数据来源于前瞻产业研究院《中国智能仓储行业发展市场需求与投资规划分析报告》。
物流管理系统包括的内容很多,包括仓储、运输等,而RFID在物流中的应用主要是在仓储环节使用RFID标签来带动日常管理,可方便仓储管理的出入库以及库内的盘点、转储、转存等 *** 作,提高效率。
其实物流作为物联网应用的一大领域,其对物流管理以及物联网产业的发展均具有良好的成效。而物联网也不仅仅是RFID一种技术实现方式,像运输过程中采用的GPS定位系统也属于此范畴。
物联网作为下一个万亿级产业,其目前已上升为国家战略,成为国家新兴战略产业,随着信息技术在各行各业的应用也必将带动物联网产业的迅速发展。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)