Python 在编程语言中是什么地位?为什么很多大学不教 Python?

Python 在编程语言中是什么地位?为什么很多大学不教 Python?,第1张

python的地位很高,目前是世界第5大编程语言。。但我觉得大学不教python,其实是正确的。
Python在诞生之初,只是用来在Linux上给Perl和shell做衔接用的“胶水”,而今天已经成为了主流的编程语言,能获得今天的地位,当然具备诸多优势。。。比如数学运算相关的各种库,爬虫,等等。。。但这都不是导致Python流行的最根本原因。
有没有比Python运算更强的语言?多得是
有没有比Python爬虫效率更高的语言?也不少
所以其实平日里随口道来的种种优势,并不是不可替代的。。这些优势,很多语言都具备。就比如perl,erlang,Julia等语言,其实用来做运算或爬虫比Python更强,但为什么这些语言却流行不起来?
说到底,Python成功的秘诀只有一条,其实就是在功能基本够用的前提下,比其他语言简单。而比Python简单的语言,功能又不够全面,比如Lua,Javascript,Ruby这些语言比Python更简单,但往往只适合一两个领域的工作,而无法面面俱到。
Python可以提供的这些功能,对于非专业程序员来讲,已经显得非常强大了。。但对于专业程序员来说,Python最大的作用,其实也只是用来“偷懒”而已。因为相比JAVA或C#这种工业级的编程语言来讲,Python除了入门简单之外,并无任何优势可言。而Python的动态语言特性、不利于维护等缺点,成为了限制它迈向深层开发的重大缺陷。
而如果熟练掌握JAVA或C#中的任何一门,想利用闲暇之余学习一下Python,看几个案例便可以入门,几乎不需要专门学习。
如果你并不以成为专业程序员做为目标,那么以Python为主,是可以的。但若想靠编程养家糊口,静态语言才是重中之重。
但如果是计算机专业的话,仅仅学Python,似乎就有点对不起“科班出身”的称号了。。。。学生们花着昂贵的学费,消耗四年光阴,却只学个Python,岂不是误人子弟?
就像你若报考摄影专业,老师应该教你使用单反,而不是教你使用手机摄像头。

人工智能领域涉及的专业有计算机科学与技术、软件工程、网络工程、信息安全、物联网工程、数字媒体技术、智能科学与技术、空间信息与数字技术、电子与计算机工程电子信息类:通信工程、信息工程、水声工程、电子信息工程、广播电视工程等。

人工智能领域

人工智能是一门新兴的高尖端学科,属于社会科学与自然科学的交叉学科,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究的范畴包含自然语言的处理、机器算法的学习、神经网络、模式识别、智能搜索。应用的领域包含机器翻译、语言和图像理解、自动程序设计、专家系统等。

人工智能的细分领域也非常多。主要从业方向有算法优化、决策树、模式识别、运筹控制、计算机神经网络、自然语言识别、机器学习(深度学习)、计算机影像学、大数据处理、分布式计算、蒙特卡洛树搜索等等。

人工智能专业相关研究方向,有很多的分支学科,包含模式识别与智能系统、计算机应用技术、智能科学与技术、信息与通信工程、计算机科学与技术、控制科学与工程、人工智能与信息处理、计算机应用技术、生物信息处理方向、计算机科学与技术超级计算方向等。

涉及的专业

1、计算机类

计算机科学与技术、软件工程、网络工程、信息安全、物联网工程、数字媒体技术、智能科学与技术、空间信息与数字技术、电子与计算机工程电子信息类:通信工程、信息工程、水声工程、电子信息工程、广播电视工程、医学信息工程、微电子科学与工程、光电信息科学与工程、电子科学与技术、电磁场与无线技术、电子信息科学与技术、电波传播与天线、电信工程及管理、应用电子技术教育、集成电路设计与集成系统

2、自动化类

自动化、轨道交通信号与控制

3、数学类

数学与应用数学、信息与计算科学、数理基础科学、数据科学与大数据技术

有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。

今年早些时候,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。

今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。

五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

从概念的提出到走向繁荣

1956年,几个计算机科学家相聚在达特茅斯会议(Dartmouth Conferences),提出了“人工智能”的概念。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。坦白说,直到2012年之前,这两种声音还在同时存在。

过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

| 人工智能(Artificial Intelligence)——为机器赋予人的智能

早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。这就是我们现在所说的“强人工智能”(General AI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”(Narrow AI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。

| 机器学习—— 一种实现人工智能的方法

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。

这个结果还算不错,但并不是那种能让人为之一振的成功。特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

| 深度学习——一种实现机器学习的技术

人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。

我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

| 深度学习,给人工智能以璀璨的未来

深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的推荐,都近在眼前,或者即将实现。

人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。你的C-3PO我拿走了,你有你的终结者就好了。

金沙江金沙江创业投资基金立足中国,专注投资于面向全球市场的高新技术初创企业。金沙江的团队成员都拥有高科技公司的管理经验,并都亲身经历过创业的甜酸苦辣,能为创业团队提供实实在在的帮助。无论在中国还是在美国硅谷,公司都建立了广泛的关系,拥有众多的资源,并可籍此为所投资企业提供强有力的支持。金沙江创业投资的投资涵盖半导体器件和新材料、互联网和无线通信技术及其应用、新媒体、绿色能源以及其他高增长的新兴领域。目前旗下管理计7亿美元的基金,并且和美国硅谷“最老牌”的创业投资基金MAYFIELD FUND(成立于1969年) 建立了长期的战略合作关系。金沙江创业投资在中国北京和美国硅谷设有办事处 。英特尔为计算机工业提供关键元件,包括性能卓越的微处理器、芯片组、板卡、系统及软件等,这些产品是标准计算机架构的重要组成部分。英特尔一直坚守“创新”理念,根据市场和产业趋势变化不断自我调整。从微米到纳米制程,从 4 位到 64 位微处理器,从奔腾® 到酷睿 TM,从硅技术、微架构到芯片与平台创新,英特尔不间断地为行业注入新鲜活力,并联合产业合作伙伴开发创新产品,推动行业标准的制定,从而为世界各地的用户带来更加精彩的体验 。凯旋创投(KEYTONE VENTURES / 原KPCB)致力于投资包括洁能环保、高科技、媒体和消费服务等领域的高速成长企业。凯旋创投公司热情专注于帮助其投资组合公司获得成功。凯旋创投知道,成功不只需要坚实的财政的支持,凯旋创投坚信团队精神带来的胜利,并帮助其投资组合公司将此信仰实施应用。NORWEST VENTURE PARTNERS (NVP)是一家全球性创业投资公司,旨在与诸位创业人士积极合作以建置成功企业,迄今已有 48 年以上的丰富经验。NVP 专注于投资信息产业,包括:半导体与计算机、企业与通讯系统、软件、服务、网际网路、媒体与消费。公司总部位于美国加州帕洛阿尔托 (PALO ALTO),目前掌管的创投资金超过 25 亿美元,自创业以来已资助过 450 家以上的公司。SK是韩国三大集团之一,主要业务领域包括能源化工、信息通讯、物流流通。目前,SK及其附属机构在全球40多个国家和地区拥有250多个办事处和子公司。在2011年《财富》500强排名中,SK位居第82位。SK集团的中国事业始于1992年中韩两国建交之前。近年来,SK在中国除了发展其传统业务外,在置业、流通和文化创意产业等领域积极开拓新事业。目前,SK在中国员工超过5,000人,业务区域遍布全国约40个地区。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13506045.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-21
下一篇 2023-08-21

发表评论

登录后才能评论

评论列表(0条)

保存