来源 | raincent_com
随着物联网的演变和发展,所有可以想象到的东西(或事物)和产业都将变得更加智能:智能家居和智慧城市、智能制造机械、智能汽车、智能健康等等。无数被授权收集和交换数据的东西正在形成一个全新的网络——物联网——一个可以在云中收集数据、传输数据和完成用户任务的物理对象网络。
物联网和大数据正在走向胜利之路。不过,要想从这一创新中获益,还需要解决一些挑战和问题。在本文中,我们很高兴与大家分享多年来在物联网咨询领域积累的知识。
物联网大数据如何应用
首先,有多种方法可以从物联网大数据中获益:在某些情况下,通过快速分析就足够了,而一些有价值的见解只有在经过深入的数据处理之后才能获得。
实时监测。通过连网设备收集的数据可以用于实时 *** 作:测量家中或办公室的温度、跟踪身体活动(计算步数、监测运动)等;实时监测在医疗保健中被广泛应用(例如,获取心率、测量血压、糖分等);它还成功地应用于制造业(用于控制生产设备)、农业(用于监测牛和作物)和其他行业。
数据分析。在处理物联网生成的大数据时,我们有机会超越监测,并从这些数据中获得有价值的见解:识别趋势,揭示看不见的模式并找到隐藏的信息和相关性。
流程控制和优化。来自传感器的数据提供了额外的上下文情境信息,以揭示影响性能和优化流程的重要问题。
▲交通管理:跟踪不同日期和时间的交通负荷,以制定出针对交通优化的建议,例如,在特定时间段增加公共汽车的数量,看看是否有改观,以及建议引入新的交通信号灯方案和修建新的道路,以减少街道的交通拥堵状况。
▲零售:跟踪超市货架中商品的销售情况,并在商品快卖完之前及时通知工作人员补货。
▲农业:根据传感器的数据,在必要时给作物浇水。
预测性维护。通过连网设备收集的数据可以成为预测风险、主动识别潜在危险状况的可靠来源,例如:
▲医疗保健:监测患者健康状态并识别风险(例如,哪些患者有糖尿病、心脏病发作的风险),以便及时采取措施。
▲制造业:预测设备故障,以便在故障发生之前及时解决。
还应注意的是,并非所有的物联网解决方案都需要大数据(例如,如果智能家居拥有者要借助智能手机来关灯,则可以在没有大数据的情况下执行此 *** 作)。重要的是要考虑减少处理动态数据的工作量,并避免存储将来没有用处的大量数据。
物联网中的大数据挑战
除非处理大量数据以获取有价值的见解,否则这些数据完全没用。此外,在数据收集、处理和存储方面还有各种挑战。
▲数据可靠性。虽然大数据永远不会100%准确,但在分析数据之前,请务必确保传感器工作正常,并且用于分析的数据质量可靠,且不会因各种因素(例如,机器运行的不利环境、传感器故障)而损坏。
▲要存储哪些数据。连网设备会产生万亿字节的数据,选择存储哪些数据和删除哪些数据是一项艰巨的任务。更重要的是,一些数据的价值还远远没有显现出来,但将来您可能需要这些数据。如果您决定为将来存储数据,那么面临的挑战就是以最小的成本做到这一点。
▲分析深度。一旦并非所有大数据都很重要,就会出现另一个挑战:什么时候快速分析就足够了,什么时候需要进行更深入的分析以带来更多价值。
▲安全。毫无疑问,各个领域的连网事物可以让我们的生活变得更加美好,但与此同时,数据安全也成一个非常重要的问题。网络罪犯可以侵入数据中心和设备,连接到交通系统、发电厂、工厂,并从电信运营商那里窃取个人数据。物联网大数据对于安全专家来说还是一个相对较新的现象,相关经验的缺失会增加安全风险。
物联网解决方案中的大数据处理
在物联网系统中,物联网体系架构的数据处理组件因输入数据的特性、预期结果等而不同。我们已经制定了一些方法来处理物联网解决方案中的大数据。
数据来自与事物相连的传感器。“事物”可以是任何物体:烤箱、汽车、飞机、建筑、工业机器、康复设备等。数据可以是周期性的,也可以是流式的。后者对于实时数据处理和迅速管理事物至关重要。
事物将数据发送到网关,以进行初始数据过滤和预处理,从而减少了传输到下一个物联网系统中的数据量。
边缘分析。在进行深入数据分析之前,有必要进行数据过滤和预处理,以选择某些任务所需的最相关数据。此外,此阶段还可以确保实时分析,以快速识别之前在云中通过深度分析所发现的有用模式。
对于基本协议转换和不同数据协议之间的通信,云网关是必需的。它还支持现场网关和中央物联网服务器之间的数据压缩和安全数据传输。
连网设备生成的数据以其自然格式存储在数据湖中。原始数据通过“流”进入数据湖。数据保存在数据湖中,直到可以用于业务目的。清理过的结构化数据存储在数据仓库中。
机器学习模块根据之前积累的历史数据生成模型。这些模型定期(例如,一个月一次)用新数据流更新。输入的数据被累积并应用于训练和创建新模型。当这些模型经过专家的测试和批准后,控制应用程序就可以使用它们,以响应新的传感器数据发送命令或警报。
总结
物联网产生大量数据,可用于实时监控、分析、流程优化和预测性维护等。然而,应该记住,从各种格式的海量数据中获得有价值的见解并不是一件容易事情:您需要确保传感器工作正常,数据得到安全传输和有效处理。此外,始终存在一个问题:哪些数据值得存储和处理。
尽管存在一些挑战和问题,但应记住,物联网的发展势头强劲,并可以帮助多个行业的企业开辟新的数字机遇。
Yoooooo!题主好啊!物联网的数据在一个完整的过程中,会有这么几个过程,我从每个过程的数据安全谈谈吧。
第一个,是数据通道,通道的安全。大家都知道数据的传输基本上是通过>
物联网网关作为一个新名词,将在未来物联网时代发挥非常重要的作用。它将成为感知网络和传统通讯网络之间的纽带。物联网网关作为一种网关设备,能够完成感知网络与通讯网络以及不同类型感知网络之间的协议转化。
网关既能够完成广域互连,也能够完成局域网互连,具备设备办理功能。运营商能够办理底层传感节点,了解每个节点的相关信息,经过物联网网关设备完成长途 *** 控。
这一部分强调了一个要害点,即物联网网关完成感知网络与通讯网络的互联,但感知网络中有许多不同的协议,如LonWorks、ZigBee、6LoWPAN、rubee等来完成这种互联网,网关有必要具有协议转化才能。一起,网关有两个要害点,即完成广域互联。当广域网不行用时,网关往往能完成局域网互连,即近端之间的交互与协作。
lora网关
主要功能:一广泛的访问才能
现在,短程通讯的技能规范许多,只有LonWorks、ZigBee、6LoWPAN、rubee等常用的无线传感器网络技能,各种技能主要是针对某一应用开发的,缺少兼容性和体系规划。现在,国内外现已开展了物联网网关的规范化作业,如3GPP、传感器作业组等,以完成各种通讯技能规范的互联互通。
二可办理性
强壮的办理才能关于任何大型网络都是必不行少的。首先,需要对网关进行办理,如注册办理、权限办理、国家监管等。网关完成了子网中节点的办理,例如获取节点的标识、状况、特点、能量等,以及因为子网的技能规范和协议复杂性的不同,唤醒、 *** 控、确诊、升级和保护等的长途完成,网关具有不同的办理功能。根据物联网的模块化网关来办理不同感知网络、不同应用,保证使用一致的办理接口技能来办理终端网络节点。
三协议转化才能
不同感知网络到接入网络的协议转化,低规范格局的数据一致封装,保证不同感知网络的协议能够成为一致的数据和信令;将上层宣布的数据包分析成可由感知层协议识别的信令和 *** 控指令。
总结这些基本网关才能没有问题,但关于物联网网关来说,要害点之一是网关本身是完成感知层和通讯层的仅有入口和出口通道。外部只需要处理网关,而网关用于调度和 *** 控下面访问和注册的各种类型的传感设备。
因而,网关具有相似于API网关的要害才能,即对传感层中各种传感设备供给的不同类型的协议进行接入和适配,一起在协议接入后能够转化为规范接口协议和通讯层交互。关于实时接口,它能够选用相似的>
一般来说,物联网网关在架构和实现进程中会提供硬件设备,实现协议转化、路由、转发、自动注册办理、南北一体化的接口才能。这个网关通常是布置在局域网端的设备。对于整个云架构,只有网关设备和云能够交互。
边缘计算的终究落地能够在物联网网关层实现,即进一步提高物联网网关的存储和核算才能。一方面,在网关层实现本地收集后的数据自动收集,二次处理后收集上传到云端。另一方面,将云的要害核算规矩和逻辑散布到网关层,支撑网关层的本地化核算。这也是网关层功用的一个要害扩展。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)