在用单片机制作的变送器类和控制器类的仪表中,需要输出1—5V或4—20mA的直流信号的时候,通常采用专用的D/A芯片,一般是每路一片。当输出信号的精度较高时,D/A芯片的位数也将随之增加。在工业仪表中,通常增加到12位。12位D/A的价格目前比单片机的价格要高得多,占用的接口线数量也多。尤其是在需隔离的场合时,所需的光电耦合器数量与接口线相当,造成元器件数量大批增加,使体积和造价随之升高。如果在单片机控制的仪表里用PWM方式完成D/A输出,将会使成本降低到12位D/A芯片的十分之一左右。我们在S系列流量仪表中采用了这种方式,使用效果非常理想。下面介绍一下PWM方式D/A的构成原理。
[二].电路原理
一般12位D/A转换器在手册中给出的精度为±1/2LSB,温度漂移的综合指标在20—50ppm/℃,上述两项指标在0.2级仪表中是可以满足要求的,下面给出的电路可以达到上述两项指标。
除精度满足要求外,温度特性也必须满足要求。影响温度特性的原因主要是5V精密电源和运算放大器的温度特性。为不使价格太高,选用2DW232精密稳压二极管,运放的电阻与滤波电阻要匹配且温度系数≤25ppm。运算放大器选择温漂≤10uV/℃的均可,一般廉价低温漂运放都可满足这个指标。采用上述措施后D/A的总温度漂为33ppm/℃。
[三].实测数据
由于这个线路是在0.2级精密仪表中使用的,因此要求线性度和温度特性必须满足要求,另外,这个数据是测量V/I转换后4-20mA电源值与给定电流值之间的误差。这个误差还包含了V/I转换的误差。因此实际的D/A自身的误差比总误差要小。
Igd(mA) Io(mA) Δ=Io-Igd
4.000 3.999 -0.001
8.000 7.998 -0.002
11.000 11.002 +0.002
16.000 16.006 +0.006
20.000 20.008 +0.008
线性=Δmax/20=0.0004
20℃ 60.℃
4.000mA 3.993mA Δ=-0.007mA
20.000mA 19.974mA Δ=-0.026mA
温度漂移=Δmax/20×40=33ppm/℃
由以上数据可知,满量程的线性度为0.04%,满量程的温度漂移为0.033%/10℃,系统响应时间约为2.2s,输出信号与标准值相差0.1%时所用的时间为11s。
[四].结束语
上面所介绍的D/A电路结构简单,原理易懂,在8098及8031单片机上都可以应用,笔者采用8098单片机的四路高速输入输出同时控制四路精密D/A输出。后面加一级V/I转换电路,构成标准的4—20mA电流输出,电路经一年多的现场实际应用,效果很好,适于目前0.2级仪表的全部要求。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)