连接器上的各种电磁干扰

连接器上的各种电磁干扰,第1张

射频干扰源
  
  当今,电子系统的时钟频率为几百兆赫,所用脉冲的前后沿在亚纳秒范围。网络接口传输数据速率为100Mbit/s和155与622Mbit/s(ATM-异步传输模)。高质量视频电路也用以亚纳秒级的象素速率。这些较高的处理速度表示了工程上受到不断的挑战。
  
  这样的挑战之一是射频(RF)干扰,这是由于电磁能量的快速变化引起的。电路上振荡速率变得更快(上升/下降时间),电压/电流幅度变得更大,问题变得更多。因此,今天同以前相比,解决电磁兼容性(EMC)就更艰难了。
  
  在电路的两个波节之前,快速变化的脉冲电流,表示了所谓差模噪声源,电路周围的电磁场可以耦合到其它元件上和侵入连接部分。经感性或容性耦合的噪声是共模干扰。射频干扰电流是彼此相同的,系统可以建模为:由噪声源、“受害电路”或“接受者”和回路(通常是底板)组成。用几个因素来描述干扰的大小:
  ●噪声源的强度
  ●干扰电流环绕面积的大小
  ●变化速率
  
  于是,尽管在电路中有很可能产生不希望的干扰,噪声几乎总是共模型的。一旦在输入/输出(I/O)连接器和机壳或地平面之间接入电缆,有某些RF电压出现时,导致几毫安的RF电流就能足以超过允许的发射电平。
噪声的耦合和传播
  
  共模噪声是由于不合理的设计产生的。有些典型的原因是不同线对中个别导线的长度不同,或到电源平面或机壳的距离不同。另一个原因是元件的缺陷,如磁感应线圈与变压器电容器与有源器件(例如应用特殊的集成电路(ASIC))。
  
  磁性元件,特别是所谓“铁芯扼流圈”型贮能电感器,是用在电源变换器之中的,总是产生电磁场。磁路中的气隙相当于串联电路中的一个大电阻,那儿要消耗较多的电能。于是,铁芯扼流圈,绕制在铁氧体棒上,在棒周围产生强的电磁场,在电极附近有最强的场强。在使用回描结构的开关电源中,变压器上必定有一个空隙,其间有很强的磁场。在其中保持磁场最合适的元件是螺旋管,使电磁场沿管芯长度方向分布。这就是在高频工作的磁性元件优选螺旋结构的原因之一。
  
  不恰当的去耦电路通常也变成干扰源。如果电路要求大的脉冲电流,以及局部去耦时不能保证小电容或十分高的内阻需要,则由电源回路产生的电压就下降。这相当于纹波,或者相当于终端间的电压快速变化。由于封装的杂散电容,干扰能耦合到其它电路中去,引起共模问题。
  
  当共模电流污染I/O接口电路时,该问题必须解决在通过连接器之前。不同的应用,建议用不同的方法来解决这个问题。在视频电路中,那儿I/O信号是单端的,且公用同一共同回路,要解决它,用小型LC滤波器滤掉噪声。在低频串联接口网络中,有些杂散电容就足够将噪声分流到底板上。差分驱动的接口,如以太,通常是通过变压器耦合到I/O区域,是在变压器一侧或两侧的中心抽头提供耦合的。这些中心抽头经高压电容器与底板相连,将共模噪声分流到底板上,以使信号不发生失真。

  在I/O区域内的共模噪声
  
  没有一个通用办法来解决所有类型的I/O接口的问题。设计师们的主要目标是将电路设计好,而常常忽略了一些视为简单的细节。一些基本法则能使噪声在到达连接器以前,降至最小:
  1)将去耦电容设置在紧挨负载处。
  2)快速变化的前后沿的脉冲电流,其环路尺寸应最小。
  3)使大电流器件(即驱动器和ASIC)远离I/O端口。
  4)测定信号的完整性,以保证过冲和下冲最小,特别是对于大电流的关键性信号(如时钟,总线)。
  5)使用局部滤波,如RF铁氧体,可吸收RF干扰。
  6)提供低阻抗搭接到底板上或在I/O区域的基准在底板上。
射频噪声和连接器
  
  即使工程师采取许多上述所列的预防措施,来减小在I/O区内的RF噪声,还不能保证这些预防措施能否成功地足够满足发射要求。有些噪声是传导干扰,即在内部电路板上按共模电流流动。这个干扰源是在底板和电路等之间。于是,这个RF电流一定通过最低阻抗(在底板和载信号线之间)的通路流动。如果连接器没呈现足够低的阻抗(与底板的搭接处),这RF电流经杂散电容流动。当这RF电流流过电缆时,不可避免地产生发射(图1A)。

  使共模电流注入到I/O区的另一机理,是附近有强的干扰源的耦合。甚至有些“屏蔽”连接器也无用,因为干扰源就在连接器附近,如PC机环境。如果在连接器和底板之间有一个缺口,此处所感应的RF电压可以使EMC性能下降(图1B)。

  屏蔽连接器方法有,加指形簧片或垫片。连接器的搭接,是在连接器和机壳之间填满空处。这个方法要求有一个衬垫(图2A)。金属衬垫较好,只要处理合适,也就是说,只要表面不被污染,只要手不触及或损坏衬垫以及只要有足够的压力,以保持好的、低阻抗的接触。
  
  别的方法是连接器装接头片或者把连接器安装在机壳上。此时,最大接触面稍微小些,且应严格控制接头片的尺寸和d性。安装屏蔽连接器时,在机壳上开口,开口的一侧要去掉油污(图2B),要仔细制作,若公差不合适,导致连接器在机壳内陷入太深,使搭接中断。每位EMC工程师知道,在“极好”的系统当中,这个问题一定要满足发射要求,并在生产线及时检查。未紧固的或弯曲的衬垫,安装于关键区域(如安装连接器的开口)的油污上,将失效。

  由于下述原因选用了EMI连接器;
  
  1)导电发泡塑料是极其柔软的,且能放在连接器的整个周围。这就消除了与另一机壳、衬垫有关的问题。
  2)机械工程师可以在系统机壳可接收的公差范围内安装连接器。
  3)连接器与机壳实现低阻抗搭接,以保证良好接触。机壳壁内侧上的衬垫,当要涂漆有遮蔽要求时,可以用更柔软的材料。
  4)要求强迫冷却的设计,衬垫最好有另一特点:连接器和机壳壁之间的缝应密封起来,以减少气漏。在有尘埃的环境中,衬垫要起到系统内保持干净。
结论
  
  当前市场上有各种各样的连接器,能使设计师为特殊接口,获得最佳设计。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2421834.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-02
下一篇 2022-08-02

发表评论

登录后才能评论

评论列表(0条)

保存